List of Figures

Figure 1.1: Data networks	2
Figure 1.2: Telegraph	7
Figure 1.3: Switching	10
Figure 1.4: Data communications timeline	12
Figure 1.5: Comparing the structure of data packets and letters	14
Figure 1.6: Packetization in business knock-down kits	15
Figure 1.7: Aggregating traffic from multiple users	17
Figure 1.8: Network statistics—USF vs. NYIIX	17
Figure 1.9: Layering in organizations	19
Figure 1.10: Layering in software	19
Figure 1.11: Network layers	20
Figure 1.12: Typical packet structure	22
Figure 1.13: Typical packet header information at a high level	22
Figure 1.14: TCP/IP layers and technologies	24
Figure 1.15: Network layer names and tasks in OSI model	25
Figure 1.16: OSI and TCP/IP	26
Figure 1.17: Data delivery technologies at TCP/IP architecture layers	28
Figure 1.18: Package delivery model in the postal service	29
Figure 1.19: A typical computer network	30
Figure 1.20: Use of tracert command to find route to www.iit.edu	35
Figure 1.21: Tracing the route to the University of Tokyo	36
Figure 1.22: TrendyWidgets office locations and staffing	39
Figure 2.1: Physical layer function	42
Figure 2.2: Comparing copper and S&P 500 (1990–2015)	45
Figure 2.3: Chilean President Sebastian Piñera with rescued miners	46
Figure 2.4: Cat5 and Cat3 cables	47
Figure 2.5: Shielded cable	47
Figure 2.6: Cat5e cable terminating in RJ45 connector	48
Figure 2.7: Cat5e wire positions on RJ45 plug	50
Figure 2.8: Aggregating network traffic from copper to fiber	52
Figure 2.9: Map of major submarine optical cables	53
Figure 2.10: Total internal reflection (conventional view)	53
Figure 2.11: Total internal reflection (view from inside the fiber)	53
Figure 2.12: Sunbeam created from total internal reflection	54
Figure 2.13: Cross-section of optical fiber	55
Figure 2.14: Digital and analog signals	59
Figure 2 15: Common digital signal	60

Figure 2.16: Sine wave generated from the height of a point on a spinning wheel	61
Figure 2.17: Properties of a sine wave	61
Figure 2.18: Common analog signals	62
Figure 2.19: Impact of noise on a digital signal	64
Figure 2.20: Binary and ternary signals	65
Figure 2.21: Amplitude modulated signal representing example data	69
Figure 2.22: New York City, around 1900	71
Figure 2.23: Frequency allocation chart (2011)	72
Figure 2.24: AM multiplexing example	73
Figure 2.25: Resultant signal in the medium	74
Figure 2.26: Result of demodulation at receiver end	75
Figure 2.27: Recovered signals after removing noise by averaging	75
Figure 2.28: NIST smart-grid conceptual model	77
Figure 2.29: Amplitude phase shift keying example	81
Figure 3.1: Ethernet connector in the rear panel of a PC	84
Figure 3.2: Early Ethernet vision	85
Figure 3.3: Early diagram of Ethernet	86
Figure 3.4: Ethernet transmitter-receiver, early 1980s	87
Figure 3.5: Hub-based Ethernet	87
Figure 3.6: Typical Ethernet	88
Figure 3.7: Packet in the medium	89
Figure 3.8: Mail broadcast	90
Figure 3.9: Receipt of packet in Ethernet	91
Figure 3.10: Collision in Ethernet	93
Figure 3.11: Error cancellation in echo	96
Figure 3.12: CRC—Sender operation	99
Figure 3.13: CRC—Receiver operation	100
Figure 3.14: Packet with FCS in the medium	101
Figure 3.15: Ethernet frame structure	102
Figure 3.16: Ethernet address	103
Figure 3.17: Ethernet address example	105
Figure 3.18: Binary representation of physical address shown in Figure 3.17	100
Figure 3.19: Loops in networks	108
Figure 3.20: Ethernet as part of larger network	109
Figure 3.21: Viewing configuration of network interfaces	113
Figure 4.1: Routers connect networks.	118
Figure 4.2: IP addresses and their relationship to data-link layer addresses	119
Figure 4.3: Data-link and IP headers in relation to packet IP Header	122
Figure 4.4: IP header	123
Figure 4.5: Street numbers help direct users to their destination	127
Figure 4.6: Example of dotted decimal representation of IP addresses	133
Figure 4.7: Network configuration of your computer	133
Figure 4.8: Two-part view of IP addresses	134
Figure 4.9: Analogy between home addresses and computer addresses	135

	400
Figure 4.10: Multi-part addressing in phone numbers	136
Figure 4.11: Zip codes—by left-most digit	137
Figure 4.12: Zip codes—by two left-most digits	138
Figure 4.13: IP address classes	139
Figure 4.14: Available addresses in each class	140
Figure 4.15: Network ID example	142
Figure 4.16: The IPv6 header	146
Figure 4.17: IPv6 allocation at the University of South Florida	148
Figure 4.18: ipconfig output showing IP address of Ethernet interface	155
Figure 4.19: Searching the ARIN database for IP address block ownership	156
Figure 4.20: Using ping	157
Figure 4.21: Home network connection	158
Figure 4.22: Pinging the local home router	158
Figure 5.1: Transport layer relative to applications and the network layer	162
Figure 5.2: Segmentation by TCP	164
Figure 5.3: TCP reliability based on sequence numbers	166
Figure 5.4: TCP ports and multiplexing	167
Figure 5.5: Analogy between TCP ports and airport gates	169
Figure 5.6: Tampa International Airport	170
Figure 5.7: Store aisle directions are analogous to server port directions	171
Figure 5.8: The etc/services file on Windows	172
Figure 5.9: Viewing used ports with the netstat utility	173
Figure 5.10: netstat –b shows the executables that are using ports	173
Figure 5.11: netstat –s option	174
Figure 5.12: Stop-and-wait flow control, a very simple flow-control mechanism	176
Figure 5.13: Using TCP window size to refine stop-and-wait flow control	177
Figure 5.14: Sliding-window flow control	178
Figure 5.15: Stop-and-wait flow control with ISN	178
Figure 5.16: Three-way handshake to exchange initial sequence numbers	179
Figure 5.17: TCP header	181
Figure 5.18: UDP header	183
Figure 5.19: Output from netstat before and after connecting to www.stu.edu	189
Figure 6.1: Application layer in TCP/IP stack	195
Figure 6.2: Internet vs. internet vs. web	196
Figure 6.3: Calculating AOL's subscription growth rate	197
Figure 6.4: Map of World Wide Web	199
Figure 6.5: Example web page written in HTML	200
Figure 6.6: Example web page as displayed in a browser	201
Figure 6.7: HTTP transaction for example web page	202
Figure 6.8: Web pages are often zipped before transmission	204
Figure 6.9: Google results (compressed above) displayed in a browser	205
Figure 6.10: E-mail system architecture	211
Figure 6.11: SMTP Wireshark capture	214
Figure 6.12: Web mail	219

Figure 6.13: FTP operation	220
Figure 6.14: Wireshark's download page	228
Figure 6.15: Wireshark welcome interface	228
Figure 6.16: Wireshark packet-capture window	229
Figure 6.17: Wireshark packet capture for htm1105.html	230
Figure 6.18: Follow TCP Stream window	232
Figure 6.19: Typical network setup	233
Figure 6.20: Blacked-out pages of Wikipedia and Google	233
Figure 7.1: DHCP settings to allocate IP addresses in specified range	237
Figure 7.2: Windows PCs use DHCP by default	238
Figure 7.3: DHCP operation timeline	239
Figure 7.4: Sample DHCP server-configuration file	241
Figure 7.5: Using non-routable RFC 1918 IP addresses	244
Figure 7.6: Basic NAT operation	245
Figure 7.7: Using NAPT and non-routable RFC 1918 IP addresses in ISPs	246
Figure 7.8: ARP sequence of operations	247
Figure 7.9: ARP packets exchanged in Figure 7.8	248
Figure 7.10: ARP cache displayed using arp –a	248
Figure 7.11: DNS use	250
Figure 7.12: View of a section of the domain name hierarchy	252
Figure 7.13: Recursive DNS query resolution	254
Figure 7.14: Typical DNS query (to obtain the IP address of www.ub.edu)	255
Figure 7.15: Tracing the DNS query for www.usf.edu	256
Figure 7.16: Changes in IP address of www.amazon.com over 10 days	257
Figure 7.17: Sample BIND DNS server configuration file	259
Figure 7.18: Home LAN with wireless router	260
Figure 7.19: Home PC IP configuration	260
Figure 7.20: Home wireless router web interface	261
Figure 7.21: Example websites hosted by Yahoo!	262
Figure 7.22: Virtual hosts architecture	263
Figure 7.23: Using nslookup to resolve a URL	266
Figure 7.24: Using IP address to navigate to a website	267
Figure 7.25: Using set d2 option with nslookup	268
Figure 8.1: A switched network vs. a routed network	271
Figure 8.2: Router at the interface between USF and Bright House networks	272
Figure 8.3: Home router	273
Figure 8.4: Typical wireless router ports, including WAN port	273
Figure 8.5: Network routes in the neighborhood of 131.247.0.0/16 (USF)	275
Figure 8.6: Example tracert output	278
Figure 8.7: Route print output routing protocols	279
Figure 8.8: Routes without route aggregation	283
Figure 8.9: Routes with route aggregation	283
Figure 8.10: Example of advertisement of aggregated route	285
Figure 8.11: IP header	285

Figure 8.12: Network neighborhood around sandiego.edu (AS 2152)	286
Figure 8.13: MPLS labeling	288
Figure 8.14: Reachable prefixes around 9/11 (source Renesys)	291
Figure 8.15: BGPlay query results	297
Figure 9.1: IP address allocation without subnetting	300
Figure 9.2: IP address allocation with subnetting	301
Figure 9.3: Internal structure of large campus-wide network	302
Figure 9.4: Subnet structure of a large network	303
Figure 9.5: Two-part interpretation of IP address	304
Figure 9.6: Three-part interpretation of IP address	304
Figure 9.7: Similarities between subnetting and phone numbers	305
Figure 9.8: Example university college subnets	310
Figure 9.9: Using ipconfig to find subnet mask	312
Figure 9.10: Subnet masking of packets at router to determine subnet ID	314
Figure 9.11: Packet transmission to hosts within and outside subnets	315
Figure 9.12: Calculating the length of the subnet ID	317
Figure 9.13: Standard field sizes of unicast IPv6 addresses	318
Figure 9.14: Coverage map of Texlink Communications	319
Figure 9.15: ipconfig /all more showing subnet mask information	323
Figure 10.1: Neighborhood intersection as CSMA example	327
Figure 10.2: Traffic merging onto interstate	327
Figure 10.3: Early Internet-used phone lines	329
Figure 10.4: WAN built using T-1 lines	330
Figure 10.5: Comparing point-to-point and statistically multiplexed WANs	332
Figure 10.6: Reduced burstiness of aggregate traffic	333
Figure 10.7: Virtual circuits	334
Figure 10.8: Traceroute showing LAN and WAN links in path	339
Figure 10.9: WANs in relation to IP and LANs	339
Figure 10.10: The Reaper UAV (Drone)	340
Figure 10.11: Network tab in Inspect element	344
Figure 11.1: General information risk-management model	349
Figure 11.2: A typical office worker	350
Figure 11.3: Typical firewall setup	356
Figure 11.4: Typical enterprise firewall configuration	357
Figure 11.5: Encryption prevents enemies from reading data	361
Figure 11.6: VPN example	365
Figure 11.7: TLS example	366
Figure 11.8: Home router security settings	368
Figure 11.9: Comparing asymmetric keys for confidentiality and integrity	370
Figure 11.10: Network redundancy at Google	371
Figure 11.11: Outage example	372
Figure 11.12: Albert Gonzalez, at the time of his indictment in August 2009	373
Figure 11.13: Transition from HTTP to HTTPS at secure website	377
Figure 11.14: TCP stream showing encryption	378

Figure 12.1: Computer, circa 1892	380
Figure 12.2: The von Neumann architecture	381
Figure 12.3: Modern computer architecture with operating system	382
Figure 12.4: CPU usage in kernel mode and user mode	384
Figure 12.5: Process state transitions	387
Figure 12.6: Threads within a process	387
Figure 12.7: Specifying web server threads in IIS	388
Figure 12.8: Threads associated with a browser tab in Chrome	389
Figure 12.9: Virtual memory	390
Figure 12.10: Virtualization overview	396
Figure 12.11: Warehouse scale computer array architecture	399
Figure 12.12: Individual server at Google WSC	400
Figure 12.13: Google container WSC cutout	400
Figure 12.14: Cloud architecture with OpenStack	404
Figure 12.15: Cloud computing usage at Animoto	406
Figure 12.16: Perfmon window	408
Figure 12.17: Perfmon add counters dialog	408
Figure 12.18: Perfmon counters added	409
Figure 12.19: Perfmon counters for the exercise	409
Figure 12.20: Perfmon counters activity capture	410
Figure 13.1: Comparing active-active and active-passive high-availability solutions	421
Figure 13.2: High-availability application server configuration example	424
Figure 13.3: Typical web application architecture for high availability	425
Figure 13.4: Business continuity and disaster-recovery cycle	428
Figure 14.1: Logical network design example	436
Figure 14.2: Physical network design example	438
Figure 14.3: Layered campus network example	439
Figure 14.4: Enterprise network example	441
Figure 14.5: SNMP architecture	442
Figure 14.6: Sample Nessus report	443
Note: The following figures appear in the two supplementary chapters included in the eTextbook on	ly.
Figure 15.1: Wireless networks can overlap	462
Figure 15.2: Structure of a campus-wide wireless LAN	465
Figure 15.3: 802.11 frame format	466
Figure 15.4: Header fields in a captured wireless frame	467
Figure 15.5: Wireless LAN physical layer header	468
Figure 15.6: Bluetooth frequency-hopping transmission	471
Figure 15.7: Bluetooth frame structure	473
Figure 15.8: WiMAX data rates	478
Figure 15.9: VSAT system operation	480
Figure 15.10: AirPCap capture topology	484

Figure 16.1: Landline adoption	489
Figure 16.2: Phone network components	490
Figure 16.3: Map showing operating areas of the seven RBOCs in 1984	493
Figure 16.4: Phone and DSL signal frequencies	495
Figure 16.5: Cell phone adoption	496
Figure 16.6: Cell phone technology evolution	498
Figure 16.7: Cell phone system architecture	500
Figure 16.8: Cell phone frequency reuse pattern example	501
Figure 16.9: Resizing cells to accommodate subscribers	502
Figure 16.10: Cell phone towers in Pomona, CA	503
Figure 16.11: Alexander Graham Bell's diary, March 10, 1876	508
Figure 16.12: Data and chipped-signal example	511

This List of Figures is an online supplement to *Business Data Communications and IT Infrastructures*, 2nd Edition, by Manish Agrawal & Rekha Sharma. © 2017, Prospect Press