ARTICLE 10

NoSQL Databases

Svetlozar Nestorov
Loyola University Chicago

Abhishek Sharma

Loyola University Chicago

Sippo Rossi
Hanken School of Economics

In this article, we will give a brief overview of NoSQL databases. The origin of the term
“NoSQL” is the phrase “not only SQL.” NoSQL databases are those that are not based on
the relational model and do not use SQL as a query language. Due to this broad definition,
NoSQL databases are not one specific type of database. Instead, the term encompasses a wide
range of database designs with varying architectures and query languages used to interact
with them. Moreover, some nonrelational databases are commonly simply referred to as
NoSQL databases, while others are primarily referred to by their more specific name, such
as vector databases. However, for simplicity, in this article, we will describe nonrelational
databases using the term “NoSQL.”

In addition to not being based on RDBMS technologies, one of the main differentiating
features of a NoSQL database is its flexible and extensible data model. In relational databases,
a database schema is defined in advance and captures the semantics of the elements in the
database. In NoSQL databases, data does not have to be stored in structures described by an
organized database schema. For example, data in many NoSQL databases is organized into
simple key-value pairs. In a key-value pair, the instance of data that is stored in the database
is a value that is given a key to be used for data retrieval. Whether the values are simple (e.g.,
a string or a number) or arbitrarily complex structures with their own semantics, the values
are processed by applications outside the database system and not the database system itself.

NoSQL databases are increasingly being used due to the emergence of big data and due
to web applications requiring flexibility and performance that cannot be achieved with
relational databases. While the popularity of NoSQL databases has increased substantially
since the early 2010s, there are no signs that they are replacing traditional relational data-
bases. Rather, NoSQL databases have become a complementary approach to storing data in
specific use cases and can be found in the back-ends of many applications and data lakes
alongside relational databases.

In this article, we will primarily focus on describing this technology using two of the
most common NoSQL database types, key-value stores and document stores. Moreover,
this article provides practical examples from two of the most popular NoSQL database
management systems, MongoDB and Redis. Later, we will briefly also outline other NoSQL
database types such as graph databases, vector databases and wide-column stores. Lastly,
we provide examples of the applications of NoSQL databases.

2 - NoSQL Databases

Terminology of NoSQL Versus Relational Databases

To provide some context to NoSQL databases, we will examine some of the common
database terms as they are defined in most NoSQL database implementations, and compare
those with the relational database definitions.

“Database,” as a broad term signifying organized collection of data accompanied by
metadata, is used in the same fashion in NoSQL and relational databases.

Whereas the main construct in a relational database is a “table” (relation), the equivalent
construct in NoSQL databases is a “collection.” In relational databases, tables first must be
created, and only after that can they be populated. Creating and populating tables are two
separate actions. In contrast, in NoSQL databases, the metadata and data for collections can
be created at the same time.

In relational databases, values are stored in table “rows,” and therefore each table contains
a set of rows. In NoSQL databases, each collection contains a set of “documents.” Whereas
all rows of a table have the same structure, the structure of the documents in any particular
collection is not required to be the same, although in most cases, the structures are similar.

In relational databases, the structural metadata of each table is represented by a “column.”
In NoSQL databases, the structural metadata of each collection is represented by a “field.”
The columns of relational tables have to be created prior to insertions of data. In contrast,
each insertion of data in a collection in NoSQL can be accompanied by creation of one or
more new fields for a document. Also, insertion of data in a collection does not have to use
all the previously created fields (which is equivalent to a table where no columns are man-
datory). The values for fields that are not used by a collection can be completely omitted
in insertion statements, whereas in insertion statements for relational tables, we still must
explicitly indicate that a particular row has no value in a particular column, or default values
have to be specified in advance.

Every relational table must have a “primary key,” which can be either a column or a set of
columns. NoSQL collections have a primary key as well, but it is system-generated in most
cases. In some NoSQL software, a relevant column can be used as a primary key instead of
these system-generated primary keys.

NoSQL Database Examples—MongoDB

We will illustrate the data model, query language, and extensibility of NoSQL databases
using a simple example of a hotel business-related database in one of the most popular and
widely used NoSQL databases, MongoDB. MongoDB is a document store-oriented NoSQL
database, which stores data in a JSON-like format.

Consider the following example of an online company that collects information about
hotels. The data collected and presented on its website contains hotel-related information,
such as rates, room types, and amenities. This company could design a relational schema
and develop a relational database to capture this information. However, in this example,
this company did not decide in advance what information they would collect for hotels, so
they will proceed with collection of data without a schema in advance, and they will use
MongoDB.

In MongoDB, such a collection of hotel documents can be built incrementally without
having to modify any schema, since there is no general schema that applies to every docu-
ment representing a hotel. For example, a document can at first contain the most basic hotel
info, such as name, address, and numeric rating. The statements here show the creation of
a single document (in a collection “hotels”), which is saved in the database:

db.createCollection("hotels")
db.hotels.insertOne(
{
name: "Metro Blu",
address: "Chicago, IL",
rating: 3.5

NoSQL Database Examples—MongoDB - 3

Similarly, multiple documents can be inserted simultaneously as shown here:

db.hotels.insertMany([

{
name: "Experiential",
address: "New York, NY",
rating: 4
I
{
name: "Zazu Hotel",
address: "San Francisco, CA",
rating: 4.5
}

1)

Note that even though the primary key is not mentioned for any of the three documents,
MongoDB creates a unique system-generated primary key (_id) for each of the documents.
However, if needed, MongoDB also allows users to explicitly set the primary key.

At this point the database contains a collection called hotels with three documents. All
such documents can be found in the database by issuing the following query (equivalent
to the "SELECT *" statement in SQL):

db.hotels.find()

Note that the schema for the hotels collection and the documents in it did not have to be
declared or defined. In order to add a new hotel with an unknown rating, a new document
without the rating field can be created as follows:

db.hotels.insertOne(
{

name: "Solace",
address: "San Francisco, CA"

)

All hotels in San Francisco, California can be found by querying hotels:
db.hotels.find({ address : "San Francisco, CA"})

This is similar to the following query in SQL:

SELECT * FROM Hotels WHERE address = 'San Francisco, CA';

If the company decides to add additional information about some hotels, the updates can
be applied to each hotel document, as depicted by the following statements:

db.hotels.updateOne({ name:"Zazu Hotel" },

{
Sset: {
wifi: "free"}

}
)
db.hotels.updateOne({ name:"Zazu Hotel" },

{

Sset: {

parking: 45}
}

)

These statements added new fields to the Zazu Hotel entry, namely, the availability of Wi-Fi
(free) and the price of parking ($45). There is no need to change a schema and migrate the
data to the new schema as would be the case for a relational database. While this may seem
trivial, consider the following scenario where similar fields need to be added to a relational
database. First, this would require modifying the schema of the database using commands
to add two columns to the table for parking and Wi-Fi, while specifying the data types and
constraints for each. Only after this could the appropriate rows be updated and the data

4 - NoSQL Databases

added to the newly created columns. However, this introduces excessive spar-

sity, as all other rows where this information is not available (or needed) would EHMPLOVEE
now always have empty attributes. Lastly, while in small databases the effort EmpiD. | EmpName | DeptiD
needed for modifying tables would not be much of an issue, in large databases 1234 | Becky 1
changes to the schema can be difficult, impractical, and more time-consuming. 2345 Molly 2
Another important characteristic of MongoDB is that denormalization is native 3456 | Rob 1
toit and the data is easily prejoined prior to processing. We will illustrate this with 4567 | Ted >
an example based on Figure 1 (same as the Figure 3.16 in Chapter 3 of Database
Systems: Introduction to Databases and Data Warehouses [Edition 3.0]). ekl
This example creates an equivalent of a prejoined (denormalized) table that DeptID | DeptLocation
contains information about employees and departments that employees report to. 1 Suite A
db.createCollection("empdept") 2 Suite B
db.empdept.insertOne(
{ , Figure 1 Data in a simple
empid: 1234, Employees and Departments

empname: "Becky", database.

dept: { deptid: 1,
deptlocation: "Suite A"}

}
)
db.empdept.insertOne (
{
empid: 2345,
empname: "Molly",
dept: { deptid: 2,
deptlocation: "Suite B"}
}
)
db.empdept.insertOne (
{
empid: 3456,
empname: "Rob",
dept: { deptid: 1,
deptlocation: "Suite A"}
}
)
db.empdept.insertOne(
{
empid: 4567,
empname: "Ted",
dept: { deptid: 2,
deptlocation: "Suite B"}
}

)

In the previous example, we created a collection “emdept” and created four documents
that contain information about four employees and their departments.

The query that seeks information about each employee and their department is written
as follows:

db.empdept.find({ empid : 1234},
{ id:0,"empid":1, "dept.deptlocation":1}
)

The “_id:0” portion of the statement prevents the display of a system-generated ID. The
result of this query is

{ "empid" : 1234, "dept" : { "deptlocation" : "Suite A" } }
This NoSQL query is similar to the following query in SQL:

SELECT empid, deptlocation FROM empdept WHERE empid = 1234;

NoSQL Database Examples—Redis * 5

The NoSQL query illustrates an example that takes advantage of the fact that the data is
“prejoined,” since all the necessary information about which employee belongs to which
department is precoded.

NoSQL Database Examples—Redis

To illustrate the diversity of NoSQL databases, we provide a small second example but this
time using Redis, another widely used NoSQL database. Redis is an in-memory key-value
store type NoSQL database. The basic constructs are documents that are identifiable by their
key name, and as in the previous example, these documents can have a varying number of
fields. While real-world use cases would be different from the provided example, as Redis
is used for specific high-speed requiring tasks, we have opted to demonstrate it with the
same hotel example as used previously for the sake of clarity.

In Redis, similar to MongoDB, the hotel documents can be added to the database incre-
mentally without having to specify any schema. The statements here show the creation of
three documents in Redis:

HSET hotel:1 name "Metro Blu" address "Chicago, IL" rating 3.5
HSET hotel:2 name "Experiential" address "New York, NY" rating 4
HSET hotel:3 name "Zazu Hotel" address "San Francisco, CA" rating 4.5

As Redis is a key-value store, the key for each collection is provided as the first input,
which in this case is, for example, hotel:1. After specifying the key it is possible to provide
fields and their values. After inserting the data it is possible now to retrieve values by speci-
fying the key and optionally field(s). We can, for instance, retrieve the name of the first hotel
with the following command, which would return the value “Metro Blu":

HGET hotel:1 name

This is similar to the following query in SQL:

SELECT name FROM Hotels WHERE id = 1

To retrieve the values of all fields of a key, similarly, it would be possible to use the com-
mand here:

HGETALL hotel:1

Which would return

1) "name"

2) "Metro Blu"
3) "address"

4) "Chicago, IL"
5) "rating"

6) "3.5"

This is similar to the following query in SQL:
SELECT * FROM Hotels WHERE id = 1

Itis also possible for keys to have different fields within them. For example, we could add
anew hotel that does not yet have a rating by leaving out this field:

HSET hotel:4 name " Solace" address " San Francisco, CA"

In its simplest form, these functionalities, with a handful of other basic commands, are
enough to get started with a simple Redis database, as Redis is designed to act as an efficient
way to store values behind keys. However, with this setup, it is not possible to query the
database without providing a specific key and fields to retrieve. In other words, without
additional steps, we cannot query for, for example, all hotel names, or retrieve an entry
based on some wildcard. To enable querying, we would need to define a schema, but this
is outside the scope of this example.

6 + NoSQL Databases

Other NoSQL Database Types

Previously we described two common types of NoSQL databases, document stores and key-
value stores, which are conceptually similar enough and easy to demonstrate alongside an
equivalent approach using a relational database and SQL commands. However, some NoSQL
databases are designed specifically to tackle limitations in the relational data model and
thus can be distinctively different. Next, we provide further descriptions of three other com-
mon classes of NoSQL databases: graph stores, vector databases, and wide-column stores.

Graph stores, also known as graph databases, are a type of NoSQL database that is based
on a graph structure consisting of a collection of nodes and edges. The nodes hold data, such
as key-value pairs, as well as metadata. Edges (also known as relationships) connect nodes,
also specifying a direction for the connection. Edges can also have properties and contain
information such as a name for the connection. There are several benefits to the database

design of a graph database. First, querying linked
data based on relationships is very fast. Second, this
architecture makes visualizing the schema of graph
databases straightforward, as it can be visualized
as a network of connected nodes (see Figure 2). Warehouse 1

As with all other types of NoSQL databases, there
exists no universal design for graph database man-
agement systems. Thus, there are multiple differ-
ent commercial and open-source graph database
management systems in use, each with its own

design and query language. One of the popular
implementations of graph database management
systems is Neo4j, which uses its own scripting lan-
guage, Cypher.

Next, we will illustrate how a very basic graph

database based on the graph shown above could

be implemented with Neo4j using Cypher. First,

these statements create the four nodes: Figure 2 A graph describing the supply chain of a retailer.

CREATE (storel:Store {location: 'Pomona'})

CREATE (store2:Store {location: 'Claremont'})

CREATE (warehousel:Warehouse {location: 'LA'})
CREATE (supplierl:Supplier {location: 'West Coast'})

Now we have four nodes, but to be able to query them, we still need to connect them. This
is done by adding edges between nodes, which can be done using the commands shown here:

MATCH (s:Store), (w:Warehouse)

WHERE s.location = 'Pomona' AND w.location = 'LA'
CREATE (w)-[r: SUPPLIES]->(s)

MATCH (s:Store), (w:Warehouse)

WHERE s.location = 'Claremont' AND w.location = 'LA'
CREATE (w)-[r: SUPPLIES]->(s)

MATCH (w:Warehouse), (su:Supplier)

WHERE w.location = 'LA' AND su.location = 'West Coast'
CREATE (su)-[r: SUPPLIES]->(w)

Now the graph that we have in the DBMS is similar to the one shown in Figure 2. One
of the strengths of using a graph database is that joining data from multiple nodes is more
straightforward than equivalent queries involving multiple tables in relational databases.
Moreover, the queries involving multiple nodes in languages such as Cypher are shorter and
more readable than those involving joining multiple tables in SQL. Consider the following
example, where data on stores, warehouses, and suppliers are kept in separate tables in a
relational database equivalent to the graph database. A query showing the supplier and
warehouse of each store could look like this:

Applicability of NoSQL 7

SELECT stores.storeLocation,
warehouses.warehouseLocation,
suppliers.supplierLocation
FROM stores
JOIN warehouses ON stores.warehouseID = warehouses.warehouselD
JOIN suppliers ON warehouses.supplierID = suppliers.supplierID;

In our Neo4j graph database, an equivalent query would look like this:

MATCH (s:Store)<-[:SUPPLIES]-(w:Warehouse)<-[:SUPPLIES]-(su:Supplier)
RETURN s.location, w.location, su.location

This example illustrates the difference in length and readability. Consider a more complex
data set and joins involving more tables, and the differences become even more pronounced.

As could be seen from the three examples (MongoDB, Redis, and Neo4j) shown so far,
NoSQL database implementations can have very little in common, as the only unifying factor
is that they do not follow the relational data model. In this section, we will still briefly outline
two newer NoSQL database types, which have found popularity in specific applications.

Vector databases are one of the more recent types of NoSQL databases, which have risen
to prominence due to their suitability as a supporting database for generative Al models and
recommendation systems. Vector databases, as the name implies, are used to store vectors,
which are fixed-length lists of numbers that represent, for example, words in a numeric
format. A simple vector, “A,” is illustrated here:

A = [-0.5969982, -0.33086956, 0.32643065, -0.3570332, 0.628059]

Vector databases are designed to store these vectors in a manner that allows efficient
querying based on similarity or distance between vectors. As a concrete example, the vector
representation of the word “cat” would be placed in a vector database close to related words
such as “paw” and “whisker,” and the vector database management system would support
rapidly locating these words and calculating the distances between them. Several of the most
used NoSQL databases, such as MongoDB and Redis, have been extended so that they can
be used also as vector databases. Readers can learn more about vector databases by going
to MongoDB and Redis’s official websites and following their tutorials for vector databases.

Wide-column stores (or column-family stores) are examples of a column-oriented NoSQL
database. Conceptually, wide-column stores are similar to key-value stores and can be seen
as simply a two-dimensional variant of them, where a value can contain nested key-value
pairs. In wide-column stores, data is stored in a so-called column-family instead of rows.
The column-families are columns of data that are related and often retrieved together,
making querying them fast. An example of a popular implementation of a wide-column
store is Apache Cassandra. As with vector databases, readers who want to learn more about
wide-column stores can go through online tutorials such as Apache Cassandra’s official
website’s tutorials.

Applicability of NoSQL

Before we elaborate on the applicability of NoSQL, let us briefly consider the environments
where RDBMS-based databases are feasible. If the data is structured uniformly and is not
massive, relational tables perform very well, while taking advantage of the simple and
ubiquitous language (i.e., SQL). Similarly, if data is structured uniformly and is massive,
adequate levels of performance can be achieved by using denormalized, indexed relational
tables while still allowing the use of SQL. These scenarios, where RDBMS and SQL provide
appropriate solutions, cover most organizational operational databases and data warehouses.

As we discussed previously, two main characteristics of a NoSQL database are the flex-
ibility of the data model and the ease with which the data can be completely denormalized,
which eliminates the need for joins. Therefore, NoSQL is appropriate for environments that
can take advantage of those two characteristics. Typically, NoSQL serves a very impor-
tant purpose in the storage and querying of massive amounts of data with structure that
is not always uniform. Examples of environments that produce such data include social

8 - NoSQL Databases

media giants (such as Facebook, Twitter, etc.) or large online retailers (such as Amazon,
Walmart, etc.). Such environments take advantage of the fact that documents of a collec-
tion do not have to share the same schema. For example, not every product in the Amazon
catalog will have the same attributes. NoSQL accommodates this diversity in a very flexible
manner, as illustrated previously.

A typical use case in a NoSQL setting is a search involving a small number of columns
(one or several) over a large amount of data, resulting in a relatively small number of rows.
Consider, for example, an Amazon.com user searching for a product based on fields such
as product category, feature, and/or price. The text of the search query is matched with the
search engine’s index, and the most relevant items are displayed to the user in the order
of the degree of relevance. The user then clicks on the item, and this leads to a read query
on a NoSQL database. In online business, such retrievals must be very quick, and NoSQL
databases are well suited for this need. Also, the structure of the product-related information
is nonuniform and fluid, and that fits well with the use case of the schema-less architecture
of NoSQL.

In such environments, the ability to quickly execute searches over massive amounts of
data on relatively few columns that produce relatively few records is paramount, and the
NoSQL is optimized for such requests. The architecture of NoSQL is entirely driven by
such use cases, and each data set is usually only contained in what is equivalent to one
table. When NoSQL databases such as MongoDB first appeared, they emerged to provide
flexibility for data schema (fields added on the fly) and an alternative to join (which is inef-
ficient with massive amounts of data). Furthermore, NoSQL databases are by design easier
to scale horizontally, which allows maintaining high performance via distributed systems
even with massive data sets.

As we have discussed throughout this book, for many organizations and scenarios, the
ability to store data in a prestructured way is paramount, and for such cases, NoSQL is not
an appropriate solution.

