ARTICLE 9

HTML, XML, and JSON

Abhishek Sharma

Loyola University Chicago

Nenad Jukié

Loyola University Chicago

In this article, we will give a brief overview of HTML, XML, and JSON, and describe how

they relate to database systems.

Markup Languages

A markup language is a language to annotate (i.e., to “mark up”) text in a document, where
annotations add functionalities to the text. Depending on the type of markup language,
the annotations can be used for various purposes, such as indicating how the annotated
text in the document is to be formatted, presented, structured, and so on.

Hypertext markup language (HTML) is an example

of a markup language. HTML provides functionality
for describing how to display the information con-
tained in web pages. The purpose of HTML is strictly
to facilitate the display of data.

Consider the HTML code shown in Figure 1, which
is stored in a file titted HTMLExample.html. The code
contains text annotated by the HTML tags. For exam-
ple, the text annotated by the start tag <p> and end
tag</p>is marked up as text to be displayed as a sepa-

<html>
<head>
<title> Web page EXAMPLE</title>
</head>
<body>

<P>This is an example of a HTML web page.</P>

<P>This part is in bold font.</P>
<I><P>This part is in italic font.</P></I>
</body>

rate paragraph, and the text annotated by the start tag

</html>

 and end tag is annotated as text to be to be
displayed in bold font.

HTMLExample.html, containing the HTML code shown
in Figure 1, will be retrieved by a web browser as the
web page shown in Figure 2.

XML

Extensible markup language (XML) is a markup lan-
guage for adding structure and semantics to a docu-
ment. One of the common usages of XML is to facilitate
data exchange from databases in e-business applica-
tions. In such scenarios, data is extracted from databases,
formatted as XML documents, and transported to and
displayed on web pages using HTML. The following is a
brief overview of some of the most basic functionalities
of XML.

Figure 1 An example of HTML code.

o-
-0

& ../HTMLExample.html

This is an example of a HTML web page.
This part is in bold font.

This part is in italic font.

Figure 2 An example of a web page.

2+ HTML, XML, and JSON

The basic building block of an XML document is called an “ele-
ment.” An XML document is composed of the “root element,” which
contains all other elements in the document. Elements in an XML
document are identified by a start tag <element_name> and an end
tag </element_name>. “Simple elements” are the actual data values
(e.g., an integer or a character value). “Complex elements” are ele-
ments that contain other elements.

Consider the XML code shown in Figure 3. The first line of this code
is the XML declaration.” The rest of this XML code is based on a subset
of data in the HAFH database (used in Chapters 3 and 5 of Database
Systems: Introduction to Databases and Data Warehouses [Edition 3.0].)
that depicts buildings, apartments, and corporate clients.

In this simple example, the root of the tree is the HAFH complex
element that contains Building elements. Each Building element is a
complex element that contains two simple elements — BuildingID and
BNoOfFloors—and one or more Apartment elements. Each Apartment
element is a complex element that has two simple elements—AptNo
and ANoOfBedrooms. In addition, some Apartment elements contain
CorporateClient elements. Each CorporateClient element is a com-
plex element that has two simple elements —CCID and CCNarmne.

In XML all elements are hierarchically organized. The terms “parent
element,” “child element,” “descendant element,” and “sibling ele-
ment” are used to describe the hierarchical relationship between the
elements. For example, Building is a parent element of child elements
BuildingID, BNoOfFloors, and Apartment, while Apartment is a parent
element of child elements AptNo, ANoOfBedrooms, and CorporateClient.

<?xml version="1.0" 2>
<HAFH>

<Building>
<BuildingID>B1</BuildingID>
<BNoOfFloors>5</BNoOfFloors>
<Apartment>
<AptNo>21</AptNo>
<ANoOfBedrooms>1</ANoOfBedrooms>
</Apartment>

<Apartment>
<AptNo>41</AptNo>
<ANoOfBedrooms>1</ANoOfBedrooms>
<CorporateClient>
<CCID>C1l1l1</CCID>
<CCName>BlingNotes</CCName>
</CorporateClient>
</Apartment>

</Building>

<Building>
<BuildingID>B2</BuildingID>
<BNoOfFloors>6</BNoOfFloors>

</HAFH>

Figure 3 An example of XML code.

At the same time, BuildingID, BNoOfFloors, Apartment, AptNo, ANoOfBedrooms, CorporateClient,
CCID, and CCName are all descendant elements of Building. Sibling elements are elements
that share the same parent. For example, BuildingID and BNoOfFloors are sibling elements.

Since the XML data is hierarchical, the schema of XML data is described by a tree. Figure 4

depicts the schema of the HAFHInfo.xml document shown in Figure 3.

HAFH
Building
I
[I]
BuildingID BNoOfFloors Apartment
|
[| 1
AptNo ANoOfBedrooms CorporateClient
I
|]
CCName CCID

Figure 4 The schema of the XML data shown in Figure 3.

* The XML declaration identifies the document as being XML and specifies the version of the XML standard (in

this case, 1.0).

As illustrated by Figure 3, the data extracted from a database can be captured in an XML
document. In addition, an XML document itself can be stored in a database. There are dif-
ferent ways to store XML documents in a database. XML documents can be stored as text
in a database system, which requires the DBMS to have a module for document processing.
Alternatively, the XML document contents can be stored as data elements, if all the documents
have the same structure. In such cases, the XML schemas must then be mapped to a database
schema. It is also possible to create XML documents from a preexisting relational database and
store them back into a database. Special DBMS called “native XML databases” have been
designed specifically for storing and processing XML data. Native XML databases have an
XML document as the basic unit of storage. Many DBMS have built-in functions that will
present the data in XML elements in a typical relational format, as rows of a table.

XML Queries

XML is often used for exchanging data between a database and an application. In such
cases, XML documents can contain fairly complex structures of elements. Thus, it is necessary
to have a mechanism for traversing the tree structure of XML elements and for extracting
information contained within.

XML path language (XPath) is a simple language that utilizes the tree representation of an
XML document, allowing the user to travel around the tree. XPath expressions return a collec-
tion of element nodes from the tree that satisfy patterns specified in an expression. Separators
/ and // are used to specify the children or descendants of a tag as described by the following;:

/ means the tag must appear as the immediate descendant
(e.g., child) of a previous parent tag
// means the tag can appear as a descendant of a previous tag

at any level

For example, to access the buildings in the HAFH database, the following statement would
be issued:

/HAFH/building

As another example, consider the following statement that accesses the apartment numbers
of apartments with more than one bedroom:

//apartment [ANoOfBedrooms > 1]/AptNo

XQuery is a language used for more wide-ranging queries on XML documents. XQuery
provides functionalities for querying XML documents similar to SQL functionalities for
querying relational tables. XQuery uses XPath expressions within a “FLWOR” (For, Let,
Where, Order by, Return) expression, which is similar to the SELECT ... FROM ... WHERE
expressions of SQL. The For part extracts elements from an XML document. The Let part
allows the creation of a variable and the assignment of a value to it. The Where part filters
the elements based on a logical expression. The Order by part sorts the result. The Return
part specifies what is to be returned as a result. The For and Let in the FLWOR expression
can appear any number of times or in any order. The Let, Where, and Order by are optional,
while the For and Return are always needed. To illustrate these expressions, consider the
following example, which assumes that the XML document shown in Figure 3 is saved into
a document titled hafhinfo.xml and stored on the web server www .hafhrealty.com:

FOR $x in doc(www.hafhrealty.com/hafhinfo.xml)
RETURN <res> $x/CorpClient/ccname, $x/CorpClient/ccid </res>

This XQuery is requesting a list of the names and IDs of corporate clients. Now consider
the expanded example, requesting a list of the names and IDs of corporate clients who are
renting apartments that have more than one bedroom, sorted by the IDs of corporate clients:

FOR $x in doc(www.hafh.com/hafhinfo.xml) LET $minbedroms := 2
WHERE $x/ANoOfBedrooms >= $minbedroms

ORDER BY $x/CorpClient/ccid

RETURN <res> $x/CorpClient/ccname, $x/CorpClient/ccid </res>

XML Queries * 3

4« HTML, XML, and JSON

Apart from having efficient mechanisms for extracting specific elements and data from
an XML document, there is also the need for efficient means for automated construction
of XML documents, based on the data queried from a database. Many of the dominant
database management systems today incorporate XML by including SQL/XML, which is
an extension of SQL that specifies the combined use of SQL and XML. The following is a
simple example that illustrates one of the particular functionalities of SQL/XML.

Consider SQL Query A, which retrieves the content of the table INSPECTOR in the HAFH

database.
SQL Query A:
SELECT i.insid, i.insname
FROM inspector ij;

SQL Query A results in the following output.

SQL Query A Result:
Insid insname
I11 Jane
122 Niko
I33 Mick

SQL/XML Query AX utilizes SQL/XML function xmlelement() to create an XML element.

SQL/XML Query AX:
SELECT

xmlelement (name "inspector",

xmlelement (name "insid", i.insid),
xmlelement (name "insname", i.insname))

FROM inspector i;

SQL/XML Query AX results in the following output.

SQL/XML Query AX Result:

<inspector>
<insid>Ill</insid>
<insname>Jane</insname>

</inspector>

<inspector>
<insid>I22</insid>
<insname>Niko</insname>

</inspector>

<inspector>
<insid>I33</insid>
<insname>Mick</insname>

</inspector>

Whereas the SQL Query A produced
rows and columns of data from the table
INSPECTOR, the SQL/XML Query AX
produced XML elements based on the
data in the table INSPECTOR.

One of the typical uses of XML is as
a means for presenting database con-
tent on web pages. One of the ways to
present the XML elements retrieved
from the database on a web page is by
using Extensible Stylesheet Language
(XSL).

Consider the XML file inspectors.xml
shown in Figure 5. The first line of
code is the XML declaration. The sec-
ond line of code specifies that an XSL

<?xml version="1.0" 2>
<?xml-stylesheet type="text/xsl" href="insptowebl.xsl"?>
<buildinginspectors>
<inspector>
<insid>I1l</insid>
<insname>Jane</insname>
</inspector>
<inspector>
<insid>I22</insid>
<insname>Niko</insname>
</inspector>
<inspector>
<insid>I33</insid>
<insname>Mick</insname>
</inspector>
</buildinginspectors>

Figure 5 The XML file inspectors.xml (to be displayed as a web page).

file insptowebl.xsl (shown in Figure 6)
will be used to describe how the file
inspector.xml should be displayed as a
web page. The remainder of the code
in the XML file inspectors.xml contains
the content from the table INSPECTOR
retrieved by Query AX.

The XSL file insptowebl.xsl shown
in Figure 6 describes how the file
inspector.xml will be displayed as a web
page.

The first four lines and the last two
lines of the code in Figure 6 contain the
necessary utilitarian information for
XSL documents. The tags <htmlI>, <title>,
<body>, , and <p> used after the
first four lines of the code are standard
HTML tags illustrated by the example
shown in Figures 1 and 2. The code in
the center, shown in bold font, uses the
XSL element <xsl:for-each> to select (in
the XML file referencing this XSL file)
every XML tree element identified by

XML Queries * 5

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head>
<title> Web page XML EXAMPLEl</title>
</head>
<body>
Building Inspectors
<xsl:for-each select="buildinginspectors/inspector">
<pP> --- </P>
<P>Inspector ID: <xsl:value-of select="insid" /></P>
<P>Inspector Name: <xsl:value-of select="insname"
/></pP>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Figure 6 The XSL file insptoweb1.xs/ (formats inspectors.xml as a web page).

the XPath expression buildinginspectors/inspector.
When the XML file inspectors.xml is opened by a web
browser, it is displayed as shown in Figure 7.

To illustrate how the same XML elements can C | % ../inspectors.xml
be formatted differently, Figure 8 shows the file
insptoweb2.xsl, which contains a different version of Building Inspectors

the XSL code for the file inspectors.xml. This code uses
HTML tags for coloring and table formatting. For -
example, tag <tr bgcolor="#808080"> specifies
the use of a gray background color in the header of
the table.

Assume that the XML file inspectors.xml now refers
to the XSL file insptoweb2.xsl instead of the XSL file
insptowebl.xsl. In that case, the XML file inspectors.xml
will be displayed as shown in Figure 9 when opened
by a web browser.

Inspector ID: 111

Inspector Name: Jane

Inspector ID: 122

Inspector Name: Niko

Inspector ID: 133

Inspector Name: Mick

Figure 7 The XML file inspectors.xml (displayed as a web page).

6 - HTML, XML, and JSON

As we just illustrated, the extracted
database content annotated by the
XML tags in an XML document can be
transported to various destinations and
arranged, formatted, and presented in
various ways.

JSON: A Lightweight Data

Interchange Format

JavaScript Object Notation (JSON) is a
popular data format that is easy to read
and write, and convenient to parse and
generate for various front-end applica-
tions (including application program-
ming interfaces— APIs). Unlike HTML
and XML, JSON is not a markup lan-
guage, but a data interchange format. In
markup languages, data is represented
by tags, and in JSON, data is repre-
sented by less verbose key-value pairs.
JSON is derived from JavaScript but is
language-independent and is mostly
commonly used for transmitting data
between a server and a web applica-
tion. In recent years, JSON has become
a dominant format for APIs and web
services, and this popularity is mainly
driven by its simplicity and ease of use.

<?xml version="1.0" 2>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head>
<title> Web page XML EXAMPLE2</title>
</head>
<body>
Building Inspectors
<table border="1">
<tr bgcolor="#BBFFFF">
<th>Inspector ID</th>
<th>Inspector Name</th>
</tr>
<xsl:for-each select="buildinginspectors/inspector">
<tr>
<td><xsl:value-of select="insid" /></td>
<td><xsl:value-of select="insname" /></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Figure 8 The XSL file insptoweb2.xs/ (formats inspectors.xml as a web page).

Itis also called a lightweight data interchange format because it has reduced overhead, and
it is less complex compared to other data formats.

JSON can represent all the functionality of various architectures of a traditional relational
database. JSON supports several data types, including

String (e.g., "Tina")
Number (e.g., 47, 3.14)
Boolean (true or false)
Null (null)

Array (e.g., ['Easy Boot", "Cosy Sock", "Dura Boot"])
Object (a nested JSON structure with key-value pairs)

As shown earlier, the data for SQL Query
A in the context of XML will be shown as
SQL/XML Query AX Result. The equiva-
lent data about inspectors could be rep-

resented by the following JSON object:

&« =2 G (%

../inspectors.xml

Building Inspectors

|Insp ector]])HIuspectur Name|

11 Jane |
122 [Niko |
133 Mick |

Figure 9 The XML file inspectors.xml (displayed as another web page).

JSON: A Lightweight Data Interchange Format « 7

Data from SQL Query AX Represented as a JSON Obiject:

{
"Inspectors": [
{
"Insid": "I11",
"Insname": "Jane"
o
{
"Insid": "I22",
"Insname": "Niko"
I
{
"Insid": "I33",
"Insname": "Mick"
}
]
}

The “[” in the JSON structure represents the start of an array. In JSON, an array is a list of
items, which can include objects, strings, numbers, Booleans, or other arrays. In the example
above, key-value pairs, where the key is on the left side of a colon and the value is on the
right side of a colon (such as key-value pair "Insid": "[22" and key-value pair "Insname":
"Niko"), form objects (delimited by curly braces) which are grouped in an array. This entire
array is now a pair part of a key-value pair, where the key part is "Inspectors". In other
words, the value of the Inspectors key is an array (indicated by [. . .]). This array contains
objects (indicated by {. . .}), and each object represents an inspector with properties such
as "Insid" and "Insname". This structure is particularly useful when we have a collection
of similar data, like a list of inspectors, products, or transactions. It allows easy access and
manipulation of each item in the array programmatically.

Unlike relational databases, data in JSON format could be architected in multiple ways
to match a very specific way of querying or accessing the data that is common in online
transaction processing. If data is used in a manner where tables need not be joined, and
each table (store, region, transaction, product, etc.) will be used independently, the JSON
data could be represented in a “flat” manner, as shown in Figure 10.

{
"Stores": [
{ "StoreID": "S1", "StoreZip": 60600, "RegionID": "C" },
1,
"Regions": [
{ "RegionID": "C", "RegionName": "Chicagoland" },
1,
"Transactions": [
{ "TID": "T111", "CustomerID": "1-2-333", "StoreID": "S1" },
1,
"Products": [
{ "ProductID": "1X1", "ProductName": "Zzz Bag", "VendorID": "PG" },
1
}

Figure 10 JSON object—Example 1.

8 - HTML, XML, and JSON

However, this data representation will complicate the query on JSON if data needs to be
joined across various tables/entities like transaction and product. If the data is often used
by joining multiple tables, then the JSON format could be changed accordingly to dramati-
cally enhance query performance. For example, if regions are accessed along with details
of stores in them or transactions are accessed often with products” information, the JSON
data could be arranged in a “nested” manner, as shown in Figure 11.

{
"Regions": [
{
"RegionID": "C",
"RegionName": "Chicagoland",
"Stores": [
{ "StoreID": "S1", "StoreZip": 60600 },
]
}
]I
"Transactions": [
{
"TID": "T111",
"StoreID": "S1",
"Products": [
{ "ProductID": "1X1", "ProductName": "Zzz Bag" },
]
}
]
}

Figure 11 JSON object—Example 2.

In this example, store data is nested in the regional data and product data is nested in
the transactions data. If data is accessed by region, the query will be very efficient. Simi-
larly, product data is nested in transactions data, and if a query often accesses transactions
along with product information, it will be significantly better than previous representa-
tion of data.

Nesting data in JSON could be arranged to various degrees to suit the application’s
needs. For example, if region data, store data, transaction data, and product data are
accessed together (i.e., data about the products sold within transactions that occur in
stores located in regions), all four entities could be nested under the region. This is
shown in Figure 12.

JSON: A Lightweight Data Interchange Format « 9

{
"Regions": [
{
"RegionID": "C",
"RegionName": "Chicagoland",
"Stores": [
{
"StoreID": "S1",
"Storezip": 60600,
"Transactions": [
{
"TID": "T111",
"Products": [
{
"ProductID": "1X1",
"ProductName": "Zzz
Bag"
}
]
}
]
}
]
}
]
}

Figure 12 JSON object—Example 3.

The flexibility of JSON is that you can arrange the nesting and resulting architecture
according to how data will be accessed. As another example, if data is queried by customers,
we can nest transactions and products under customers, as shown in Figure 13.

"Customers": [
{
"CustomerID": "1-2-333",
"CustomerName": "Tina",
"Transactions": [
{
"TIp": "T111",
"StoreID": "S1",

"Products": [
{ "ProductID": "1X1", "ProductName": "Zzz Bag" }

Figure 13 JSON object—Example 4.

10 « HTML, XML, and JSON

The key factors in choosing JSON architecture and respective nesting strategies are the
following:

1. Query performance: If we frequently query data grouped by a specific entity (e.g., regions
or customers), nesting related data under that entity reduces lookup time.

2. Size of the resulting JSON data: Deeply nested JSON can increase size and complexity,
especially if there is redundancy. Hence query performance comes at a cost.

3. Flexibility: Flat structures are easier to work with if we need relational operations or
transformations.

4. Requirements of the front-end application: API endpoints or front-end data requirements
significantly influence a particular structure.

Overall, JSON is becoming a popular format in today’s data world and many relational
databases (PostgreSQL, Snowflake, and more) have adopted JSON as a data type. Data
stored in JSON fields could be queried using SQL extensions inside these databases.

As an example, we can create a product table with a JSON column in PostgreSQL database
using the following syntax:

CREATE TABLE product (
product_id SERIAL PRIMARY KEY,
product data JSONB
)i
-— Insert JSON data into the table
INSERT INTO product (product data)

VALUES
('{"ProductID": "1X1", "ProductName": "Zzz Bag", "ProductPrice": 100, "Category":
{"CategoryID": "CP", "CategoryName": "Camping"}}'),
('{"ProductID": "2X2", "ProductName": "Easy Boot", "ProductPrice": 70, "Category":
{"CategoryID": "FW", "CategoryName": "Footwear"}}'),
('{"ProductID": "3X3", "ProductName": "Cosy Sock", "ProductPrice": 15, "Category":
{"CategoryID": "FW", "CategoryName": "Footwear"}}'

If we wish to query the entire JSON object, we can query the column like a regular table
column in the following manner:

SELECT product_data
FROM product;

In addition to this, we can also query the JSON object (by using ->) and also retrieve a JSON
value (by using ->>). For example, if we wish to display the product name for all products,
we would write the following query:

SELECT product_data ->> 'ProductName' AS ProductName
FROM product;

Using both -> and ->>, we can query the nested JSON object. For example, if we wish to
display category names for all products, we would write the following query:

SELECT product _data -> 'Category' ->> 'CategoryName' AS CategoryName FROM product;

In this example, the -> syntax gives us the array of category, and then the subsequent ->>
gives us the category names’ values.

With these latest developments, JSON is becoming a widely used data paradigm and has
been gaining strong footing even in the traditional relational database world.

There are salient differences between JSON and XML that have led to the emergence of
JSON as the preferred way to exchange data across applications. The big shortcoming
of XML is that it is highly verbose and repeats information across the entire document. In
the example shown earlier (SQL/XML Query AX Result), the phrase “inspector” is repeated
multiple times and does not bring any new information. However, a matching representation

JSON: A Lightweight Data Interchange Format * 11

of the same information in JSON (Data from SQL Query AX Represented as a JSON Object)
does not repeat the phrase “inspector.” Even though JSON is not as compact as a relational
database, it is much less verbose than XML.

Another issue with XML is that even though XML and JSON both are hierarchical in
structure, XML is not optimal for quick querying of the data and retrieving a particular set
of information. Similar information stored in JSON is very efficiently retrieved by existing
technology and tools like Python, JavaScript, PostgreSQL, Microsoft PowerShell, Linux Bash,
and so on. With JavaScript, which is a language very often used in mobile or web applica-
tions, the difference is notable. A single command looking for the name of the inspector 122
listed below will retrieve the inspector named “Niko” into the variable inspector and the
subsequent command will display “Niko” as the inspector’s name:

// Retrieve the Inspector node
const inspector = inspectors.Inspectors.find(inspector => inspector.Insid === "I22");

A similar code for XML, as shown here, will be more verbose and inefficient:

// Retrieve the Inspector node

const inspectors = xmlDoc.getElementsByTagName("Inspector");
for (let i = 0; i < inspectors.length; i++) {

if (inspectors[i].getElementsByTagName("Insid")[0].textContent === "I22")
}

Another reason why JSON has become more prevalent in recent years is the flexibility of
JSON (as discussed earlier) with different levels of nesting of the same data to suit a par-
ticular application. However, with XML, a singular hierarchical format is strictly imposed,
and there is no way around it.

Overall, JSON has been adopted by most applications and programming paradigms
today mainly because it provides less overhead, efficient parsing and consumption of data
by applications, and flexibility of architecture to match the needs of the application. With
that said, there are still use cases where XML is a better choice. For example, when dealing
with configuration files supporting applications or enterprise systems where verbosity of
the data is required, XML is still widely used.

