
A R T I C L E 6

Assertions, Triggers, Stored
Procedures, and Functions

Abhishek Sharma
Loyola University Chicago

Svetlozar Nestorov
Loyola University Chicago

In this article, we will give a brief overview of assertions, triggers, stored procedures, and
functions.

Assertion is one of the mechanisms for specifying user-defined constraints. To illustrate
and describe this mechanism, we will use the example shown in Figure 1.

In this example, a user-defined constraint states that every professor can advise up to 10
students. The following is the SQL CREATE ASSERTION statement specifying this rule:
CREATE ASSERTION profsadvisingupto10students
CHECK (
(SELECT MAX(totaladvised)
FROM (SELECT count(*) AS totaladvised

FROM student
GROUP BY advisorid)) < 11);

The CHECK statement verifies that the highest number of students advised by any professor
is less than 11. The comparison within the CREATE ASSERTION statement would return the
value TRUE if there were no advisors who advise more than 10 students. In case there are any
professors who do advise more than 10 students, the comparison would return the value FALSE.

Even though CREATE ASSERTION is
part of the SQL standard, most RDBMS
packages do not implement asser-
tions using CREATE ASSERTION state-
ments. Nevertheless, we chose to give
an example of a CREATE ASSERTION
statement, as it is very illustrative of the
process of implementing user-defined
constraints. Most RDBMS packages are
capable of implementing the function-
ality of the assertion through different,
more complex types of mechanisms,
such as triggers.

Figure 1 Each professor can advise up to 10 students.

2 • Assertions, Triggers, Stored Procedures, and Functions

Triggers
A trigger is a rule that is activated by a deletion of a record, an insertion of a record, or a
modification (update) of a record in a relation. To illustrate triggers, consider how the asser-
tion ProfsAdvisingUpTo10students could be implemented as the following two triggers
written in Oracle:
CREATE OR REPLACE TRIGGER studentinserttrigger

BEFORE INSERT ON student
FOR EACH ROW

DECLARE totaladvised INT DEFAULT 0;
BEGIN

SELECT COUNT(*) INTO totaladvised
FROM student
WHERE advisorid = :NEW.advisorid;
IF totaladvised >= 10
THEN

 :NEW.advisorid := NULL;
END IF;

END;
CREATE OR REPLACE TRIGGER studentupdatetrigger

BEFORE UPDATE ON student
FOR EACH ROW

DECLARE totaladvised INT DEFAULT 0;
BEGIN

SELECT COUNT(*) INTO totaladvised
FROM student
WHERE advisorid = :NEW.advisorid;
IF (totaladvised >= 10) THEN

 :NEW.advisorid := NULL;
END IF;

END;

The StudentInsertTrigger uses a variable (local to the trigger) TotalAdvised that is initially
set to zero. This trigger is executed before each INSERT INTO Student statement is executed.
The NEW.AdvisorID refers to the AdvisorID value of the student record being inserted.
For example, let us assume that the following INSERT INTO statement is being issued for
the relation STUDENT:
INSERT INTO student VALUES ('1111', 'Mark', 'P11');

The AdvisorID value for the new record being inserted is P11, and therefore the NEW.
AdvisorID value in this case is P11. Before each insert, the SELECT query counts how many
records in the STUDENT relation have the same value of AdvisorID as one in the record being
inserted (P11 in this case). This count value is then placed into the TotalAdvised variable.
The IF statement in the trigger, following the SELECT query, checks if the count has already
reached the value of 10. If it has, the insert would cause the new count to exceed the value of
10. This is not allowed, and the trigger will cause the INSERT INTO statement to be executed as
INSERT INTO student VALUES ('1111', 'Mark', null);

thereby leaving the new student without an advisor. However, in that case, since the
AdvisorID is a NOT NULL column due to the mandatory participation of the STUDENT
entity in the Advises relationship, the entire INSERT INTO statement will be rejected by
the RDBMS. If the count has not already reached the value of 10, then the insert statement
will be executed as originally written:
INSERT INTO student VALUES ('1111', 'Mark', 'P11');

The StudentUpdateTrigger would work exactly the same as the StudentInsertTrigger,
except that it would be triggered by the update (modify) operation rather than by the insert
operation. The StudentDeleteTrigger is not necessary in this case, since we are making sure
that the number of advised students does not exceed a certain limit. A delete operation
would never increase the number of students advised by any advisor.

Stored Procedures and Functions • 3

Stored Procedures and Functions
Users often have to accomplish repetitive tasks in the databases that involve many sequen-
tial steps. SQL cannot handle such requirements, because SQL statements issued against a
database are independent of one another and have no memory or recollection of one another.
Stored procedures and functions are created to meet these requirements.

Stored procedures and functions are the collections of sequential actions that can be cre-
ated and saved in the database as database objects. These database objects are written in
a programming language that is a procedural extension to SQL, such as PL/SQL (Oracle),
T-SQL (MS SQL), PLpgSQL (PostgreSQL), and so on. The examples and discussion here
are based on Oracle but the same principles can be applied to almost every other database.

Stored procedures contain recorded sequential database steps or actions that are executed
and that do not return any value. On the other hand, functions contain recorded sequential
database steps or actions that are executed and that provide a return value.

A stored procedure has following structure:
CREATE OR REPLACE PROCEDURE procedure_name(arg1 data_type, . . .) AS
BEGIN

. . .
END procedure_name;

Procedure_name is a distinct name given to a procedure. Executing the CREATE OR
REPLACE clause overwrites an existing stored procedure definition with a new stored
procedure definition. Depending on the arguments supplied at the innovation of the
stored procedure or function, different steps are executed. This aspect of creating multiple
functions with the same name but different definitions is called function overloading.

Arg1 is an example input/argument given to the stored procedure followed by its data
type. There can be multiple arguments for a stored procedure, but the use of arguments is
optional (i.e., a procedure does not have to have an argument).

The BEGIN clause starts the definition of the stored procedure and details the steps that
will be executed at the invocation of the procedure.

AS keywords initiate the definition of the function or procedure. Local variables that will
be used by the function or procedure are declared after the AS keyword. Each variable is
followed by its data type (shown in a later example).

BEGIN—END encapsulates the body of the function or procedure. This body contains
all the steps that the procedure or function will perform and uses all salient methods of
programming, including loops, case statements, if statements, and so on.

Let us consider the following example of a stored procedure without an argument. Assume
we want to add to the table PRODUCT a column pricecategory, which can have three values,
such as “average,” “high,” and “low.” We want to update the table every day after adding
new products to reflect these updated price categories. First, the table is altered as follows:
ALTER TABLE product ADD pricecategory CHAR(10);

Upon execution of the statement, the data inside the PRODUCT table is shown in Figure 2.

Figure 2 Altered table PRODUCT.

4 • Assertions, Triggers, Stored Procedures, and Functions

We will use a stored procedure to accomplish the repetitive task of adding price category
values to products. The procedure will have following steps:

	 1.	 Create or replace a procedure named zagi_retail_store.
	 2.	 Declare three local variables:

•	 avg_price of the data type number
•	 pricecategory of data type that matches with the data type of the price category column of

the product table
•	 product_r of data type that could hold a row of table product

	 3.	 Declare a cursor (it is a way to pool a set of rows in the memory of the database server)
named c1.

	 4.	 BEGIN starts the body of the procedure.
	 5.	 SELECT average price of all products from the product table into the local variable avg_price.
	 6.	 Create a FOR loop to iterate through all the rows in cursor c1 and assign that row to local

variable product_r.
	 7.	 For each row, if the product price is 110% of the average price, set the local variable price-

category to 'high'; if the price is less than 90% of the average price, set the local variable
pricecategory to 'low'; otherwise set the pricecategory to 'average.'

	 8.	 Update the product table and set the pricecategory column to local variable price category
where productid matches.

	 9.	 Commit the transaction.
	 10.	 End the loop after iterating through all the rows.
	 11.	 End the stored procedure.

The following is the syntax of this stored procedure:

CREATE OR REPLACE PROCEDURE zagi_retail_store
AS
avg_price NUMBER;
pricecategory product.pricecategory%type;
product_r product%rowtype;
CURSOR c1 is SELECT * FROM product;
BEGIN
SELECT avg(productprice) INTO avg_price FROM product;
FOR product_r IN c1
LOOP

IF product_r.productprice > 1.1 * avg_price THEN pricecategory := 'high';
ELSIF product_r.productprice < 0.9 * avg_price THEN pricecategory := 'low';
ELSE pricecategory := 'average';
END IF;
UPDATE product t	 SET t.pricecategory = pricecategory
WHERE t.productid = product_r.productid ;
COMMIT;

END LOOP;
END zagi_retail_store;

Once the stored procedure is created, it can be executed with the following command:
EXEC zagi_retail_store;

After executing the stored procedure, the values of the pricecategory column have been set
to appropriate flags (high, low, average), as shown in Figure 3.

Stored Procedures and Functions • 5

Figure 3 Altered table PRODUCT with price category values.

Now let us consider an example of a stored procedure with an argument. Let us assume
the scenario that a user wants to set the pricecategory column based on a variable percent-
age of the average price. This requirement can be met by adding arguments to the previous
stored procedure. In the following example of stored procedure, we add two arguments
(highbound and lowbound) and use them in the calculation and comparison for inputting
the price category column. In the previous example, the highbound was 1.1 and lowbound
was 0.9, but now we can change them by changing the argument.

CREATE OR REPLACE
PROCEDURE zagi_retail_store_parameter (highbound number, lowbound number)
AS
avg_price NUMBER;
pricecategory product.pricecategory%TYPE;
product_r product%ROWTYPE;
CURSOR c1 is SELECT * FROM product;
BEGIN
SELECT avg(productprice) INTO avg_price FROM product;
FOR product_r IN c1
LOOP

IF product_r.productprice > highbound * avg_price THEN pricecategory := 'high';
ELSIF product_r.productprice < lowbound * avg_price THEN pricecategory := 'low';
ELSE pricecategory := 'average';
END IF;
UPDATE product t SET t.pricecategory = pricecategory
WHERE t.productid = product_r.productid ;
COMMIT;

END LOOP;
END zagi_retail_store_parameter;

In this example, we supply highbound = 1.4 and lowbound = 0.7 and execute the stored
procedure by using following command:
EXEC zagi_retail_store_parameter(1.4,0.7);

Now the data in the product table looks as shown in Figure 4.

Figure 4 Result of executing a stored procedure with an argument.

6 • Assertions, Triggers, Stored Procedures, and Functions

Functions are written in a similar fashion as procedures, but they contain an additional
syntax for the return of a value. In the declaration section, we declare the data type of the
returned value. The example shown below uses three parameters/arguments (highbound,
lowbound, and productid or pid). The function returns the imputed pricecategory for a
specific productid supplied in pid argument using the same logic as shown in the previous
example, but it does not update the table. This function can then be called in an SQL state-
ment to update the table or just display the calculated expression.
CREATE OR REPLACE FUNCTION zagi_retail_store_function (highbound

NUMBER, lowbound NUMBER, pid product.productid%TYPE)
RETURN product.pricecateogry%TYPE
AS
avg_price number;
pricecategory product.PRICE_CATEOGRY%type;
pprice product.productprice%type;
BEGIN

SELECT avg(productprice) INTO avg_price FROM product;
SELECT productprice INTO pprice FROM product WHERE productid =

pid;
IF pprice > highbound * avg_price THEN pricecategory := 'high';
ELSIF pprice < lowbound * avg_price THEN pricecategory := 'low';
ELSE pricecategory := 'average';
END IF;

RETURN(pricecategory);
END zagi_retail_store_function;

Once the function is created, we can now call it like any other regular SQL function, and it
will display the output as shown below. The pricecategory column reflects values created
by the stored procedure that used highbound = 1.1 and lowbound = 0.9, but the function
(as shown below using the alias pricecategoryupdated) shows the price category based on
highbound = 1.4 and lowbound = 0.7.
SELECT p.*,
zagi_retail_store_function(1.4, 0.7, p.productid) AS

pricecategoryupdated
FROM product p;

The result of this query is shown in Figure 5.

Figure 5 Result of executing a query using a function.

