ARTICLE 5

Further Notes on SQL
Window Functions

Sippo Rossi
Hanken School of Economics

Window functions were briefly presented in Chapter 5 of Database Systems: Introduction
to Databases and Data Warehouses (Edition 3.0) with a set of examples illustrating how they
function. This article provides a more detailed visual illustration of window functions as
well as a broader description of different types of window functions.

Recall that window functions are used for calculation across multiple rows that are related
to the current row by using the keyword OVER to define a portion of rows (i.e., window)
that should be considered as inputs to produce an output. Moreover, it is possible to dis-
play multiple different outputs based on the grouping of the rows, instead of applying one
calculation to all rows, by using the keyword PARTITION BY.

Consider Query 1 (same as Query 47a in Chapter 5 of Database Systems: Introduction
to Databases and Data Warehouses [Edition 3.0]) shown here, containing a basic window
function.

Query 1: SELECT productid, productname, productprice,
vendorid,
AVG(productprice) OVER() AS avg p price
FROM product
ORDER BY vendorid, productid;
ProductID | ProductName | ProductPrice VendorID |Avg_P_Price
2X2 Easy Boot 70 MK 112.50
3X3 Cosy Sock 15 MK 112.50
5X5 Tiny Tent 150 MK 112.50
6X6 Biggy Tent 250 MK 112.50
1X1 Zzz Bag 100 PG 112.50
4X4 Dura Boot 90 PG 112.50

Figure 1a Result of Query 1.

Visual demonstration of the functioning of a window function in Query 1, is shown in
Figure 1b.

In the top part of Figure 1b we show the result of a query using only an aggregate func-
tion (avg(productprice)), which results in an output consisting of a simple row (with one
value: 112.5). If we want to see the result of an aggregate function applied over multiple

2 - Further Notes on SQL Window Functions

Aggregate Function AVG(productprice)
ProductID | ProductName | ProductPrice | VendorID
X1 72z Bag /100 PG \
2X2 EasyBoot [/ |70 '\ MK _ -
— Cosy Sock I P \ ik _— AVG(ProductPrice)
ax4 DuraBoot | |90 | PG e
5X5 TinyTent \ [150 / MK 7"
6X6 Biggy Tent \[250 / MK
Window Function AVG(productprice)
ProductID | ProductName | ProductPrice | VendorID ProductID | ProductName | ProductPrice VendorID |Avg_P_Price
1X1 722 Bag /100 PG 2x2 Easy Boot 70 MK /112.50
2X2 EasyBoot [[70 '\ MK 3x3 Cosy Sock 15 MK [11250
3x3 Cosy Sock [|15 \ MK 5X5 Tiny Tent 150 MK [11250
ax4 Dura Boot | |90 | PG 6X6 Biggy Tent 250 MK | 11250
5X5 Tiny Tent \ 150 / MK 1X1 Z22 Bag 100 PG \ 11250
6X6 Biggy Tent \[250 / MK 4x4 Dura Boot 90 PG \\112.50)

Figure 1b Aggregate functions and window functions.

rows, a window function is a convenient way to do so without needing to use a subquery,
as illustrated by the bottom part of Figure 1b.

It should be noted that in window functions the value applied using OVER() does not
have to be created using an aggregate function, as we will show later in this article.

Next, we will illustrate the use of PARTITION BY in window functions. Consider Query 2
(same as Query 48 in Chapter 5 of Database Systems: Introduction to Databases and Data Ware-
houses [Edition 3.0]), which calculates the average price, but instead of calculating it for all
products, we use the average price of products that share the same vendor as specified by
PARTITION BY.

Query 2: SELECT productid, productname, productprice,
vendorid,
AVG(productprice) OVER (PARTITION BY
vendorid) AS avg p_price per vendor
FROM product
ORDER BY vendorid, productid;
ProductID | ProductName | ProductPrice VendorID | Avg_P_Price_Per_Vendor
2X2 Easy Boot 70 MK 121.25
3X3 Cosy Sock 15 MK 121.25
5X5 Tiny Tent 150 MK 121.25
6X6 Biggy Tent 250 MK 121.25
1X1 Zzz Bag 100 PG 95.00
4X4 Dura Boot 90 PG 95.00

Figure 2a Result of Query 2.

Visual demonstration of the functioning of a window function in Query 2 is shown in
Figure 2b, which illustrates how the AVG() function is aggregating based on VendorlD,
resulting in the Avg_P_Price_Per_Vendor derived column having multiple different values.

Ranking Window Functions * 3

Window Function with PARTITION BY AVG(productprice)

ProductID | ProductName | ProductPrice | VendorID ProductID | ProductName | ProductPrice VendorID |Avg_P_Price
1X1 Zzz Bag 100 PG 2X2 Easy Boot 70 MK ﬂz1.z§~
2%0 Easy Boot 70 M 3x3 Cosy Sock 15 MK { 121.25
3X3 Cosy Sock 15 M 5X5 Tiny Tent 150 MK \ 121.25
4x4 Dura Boot 90 PG 6X6 Biggy Tent 250 MK \{2__1_:_2.

5X5 Tiny Tent 150 M 1X1 Z2z Bag 100 PG £ 95.00[™
6X6 Biggy Tent 250 MK ax4 Dura Boot 90 PG %, 95.00

Figure 2b Window function with PARTITION BY.

Ranking Window Functions
In Chapter 5 of Database Systems: Introduction to Databases and Data Warehouses (Edition 3.0),
we introduced the RANK function. An example was given (Query 49) demonstrating a
way to calculate and show a rank for products based on product price from low to high.
In this article, we will present an additional ranking window function, which is the ROW_
NUMBER function. Other ranking window functions, such as PERCENT_RANK, NTILE,
DENSE_RANKE, and CUME_DIST functions, are not covered in this article. Readers are
encouraged to study more about using the various resources available online as well as
in the documentation of the DBMS of their choice.

The ROW_NUMBER window function is used to assign an integer value that indicates
the row number for each row. The row number is calculated by partition, thus resulting in
each partition starting from row number 1 as seen in Query 3 and Figure 3.

Query 3 text: For each product, retrieve the product 1D, name of the product, price of the product,
and vendor ID, and include a row number so that for each vendor the numbering starts

from one.
Query 3: SELECT productid, productname, productprice,
vendorid,
ROW_NUMBER() OVER (PARTITION BY vendorid)
AS row_number_grouped_by_ vendorid
FROM product;
ProductID | ProductName | ProductPrice VendorID |[Row_Number_Grouped_By_VendorID
2X2 Easy Boot 70 MK 1
3X3 Cosy Sock 15 MK 2
5X5 Tiny Tent 150 MK 3
6X6 Biggy Tent 250 MK 4
1X1 Zzz Bag 100 PG 1
4X4 Dura Boot 90 PG 2

Figure 3 Result of Query 3.

Instead of using PARTITION BY, it would also be possible to use the ORDER BY followed
by specifying a column, and then the numbering would be done based on the column with
all rows included without partitioning. This is demonstrated in Query 4 and Figure.4.

Query 4 text: For each product, retrieve the product 1D, name of the product, price of the product,
and vendor ID, and include a row number ordered by vendor ID.
Query 4: SELECT productid, productname, productprice,
vendorid,
ROW_NUMBER() OVER (ORDER BY vendorid) AS
row_number
FROM product;

4 - Further Notes on SQL Window Functions

ProductID | ProductName | ProductPrice VendorID |Row_Number
2X2 Easy Boot 70 MK 1
3X3 Cosy Sock 15 MK 2
5X5 Tiny Tent 150 MK 3
6X6 Biggy Tent 250 MK 4
1X1 Zzz Bag 100 PG 5
4X4 Dura Boot 90 PG 6

Figure 4 Result of Query 4.

Lastly, it is possible to combine both the PARTITION and ORDER BY command in one
query, as is illustrated in Query 5 and Figure 5.

Query 5 text: For each product, retrieve the product 1D, name of the product, price of the product,
and vendor ID, and include a row number ordered by product price separately for each

vendor.
Query 5: SELECT productid, productname, productprice,
vendorid,
ROW_NUMBER()
OVER (PARTITION BY vendorid ORDER BY
productprice)
AS item number by vendor
FROM product;
ProductID | ProductName | ProductPrice VendorID |Item_Number_By_Vendor
3X3 Cosy Sock 15 MK 1
2X2 Easy Boot 70 MK 2
5X5 Tiny Tent 150 MK 3
6X6 Biggy Tent 250 MK 4
4X4 Dura Boot 90 PG i
1X1 Zzz Bag 100 PG 2

Figure 5 Result of Query 5.

Value Window Functions

Value window function can be used to compare the current row to the value of another row,
such as the value in the first, last or nth row in a table, using the keywords FIRST_VALUE,
LAST_VALUE or NTH_VALUE. Comparing to the first or last value makes sense when the
table is ordered in a sensible manner. For instance, if a table is ordered by total sales volume
by customer, with value window functions, it is easy to compare the difference between
any individual customer and the customer who has spent the most (or least). Another
possible use case is when wanting to compare the current product to the most expensive
product within the same product category. This latter example is demonstrated in Query 6
and Figure 6.

Query 6 text: For each product, retrieve the product ID, name of the product, category ID, price of
the product, and difference between the price of this product and the most expensive
product within the same product category.

Query 6: SELECT productid, productname, categoryid,

productprice,

productprice - FIRST VALUE (productprice)

OVER (PARTITION BY categoryid ORDER BY

productprice DESC)

AS dif to most_expensive_ in category
FROM product;

LAG and LEAD Window Functions * 5

ProductID | ProductName CategoryID |ProductPrice|Dif_to_Most_Expensive_in_Category
6X6 Biggy Tent cp 250 0

5X5 Tiny Tent CcP 150 -100

1X1 Zzz Bag CcpP 100 -150

4X4 Dura Boot FW 90 0

2X2 Easy Boot FW 70 -20

3X3 Cosy Sock FW 15 -75

Figure 6 Result of Query 6.

LAG and LEAD Window Functions

As the last part of this article, we will discuss the LAG and LEAD functions. These functions
can be used to create a column that is calculated from another column, using rows before or
after the current row. It is important to note that when using LAG and LEAD, the rows must
represent data that is ordered, for example by time or by some other reasonable attribute.
One example of a situation where this functionality is particularly useful is when the goal
is to calculate differences between rows. Depending on which function is used, the first or
last element in each partition will be null, since there is no row to compare the value to.

The use of LAG is demonstrated in Query 7, and the result of the query is shown in Fig-
ure 7. Here we calculate a new column with information on the difference between the price
of the product and the next most expensive product in the same category.

Query 7 text: For each product, retrieve the product name, category ID, product price and difference
between this product’s price and the next most expensive product’s price within the
same product category. Within the category ID, sort by product price, in descending

order.
Query 7: SELECT productname, categoryid,
productprice, productprice -
LAG(productprice, 1)
OVER (PARTITION BY categoryid ORDER BY
productprice)
AS dif to next cheaper prod in category
FROM product
ORDER BY categoryid, productprice DESC
ProductName CategoryID |ProductPrice| Dif_to_Next_Cheaper_Prod_in_Category
Biggy Tent CP 250 100
Tiny Tent CcpP 150 50
Zzz Bag CP 100 null
Dura Boot FW 90 20
Easy Boot FW 70 55
Cosy Sock FW 15 null

Figure 7 Result of Query 7.

Conversely, if we were to use the LEAD function instead of LAG, with minor adjustments
to the SQL query it is possible to compare each row to a row above. Moreover, it is pos-
sible to create multiple new columns with window functions for example by simply using
LEAD more than once within the same query. This is demonstrated in Query 8 and Figure 8.

6 * Further Notes on SQL Window Functions

Query 8 text: For each product, retrieve the product name, product price, price of the product that
is one above the current product in price, and difference between these two prices,
considering products within the same product category. Within the category ID, sort

by product price.
Query §8: SELECT productname, productprice, categoryid,

LEAD (productprice)OVER
(PARTITION BY categoryid ORDER BY productprice)
AS price_of_ next more_expensive_product_in_category,
LEAD(productprice) OVER
(PARTITION BY categoryid ORDER BY productprice) - productprice
AS dif_ to_next_more_expensive_prod_in_category

FROM product

ORDER BY categoryid,productprice;

ProductName | ProductPrice | CategoryID | Price_of_Next_More_Expensive_Prod_in_Category |Dif_to_Next_More_Expensive_Prod_in_Category
Zzz Bag 100 CP 150 50

Tiny Tent 150 cpP 250 100

Biggy Tent 250 CP null null

Cosy Sock 15 FW 70 55

Easy Boot 70 FW 90 20

Dura Boot 90 FW null null

Figure 8 Result of Query 8.

There are two additional parameters for LAG and LEAD that can be adjusted: the offset
and default value. The former is used to determine how many rows are skipped if one
wishes to compare a row that is more than one step above or below the current row. With
the default value parameter, it is possible to set a different value instead of null when there
is no element with which to compare.

In conclusion, window functions provide a powerful set of tools for calculations across
rows in relation to the current row. They are particularly valuable when the goal is to
perform calculations, such as those in aggregate functions, while maintaining outputs at
a row-level. Moreover, windows functions provide a convenient way to produce columns
that allow comparing or viewing data in a ranked format when using the value window
functions or LAG and LEAD clauses.

