
A R T I C L E 2

Further Notes on
Normalization and

Higher Normal Forms

Nenad Jukić
Loyola University Chicago

Kornelije Rabuzin
University of Zagreb

The coverage of functional dependencies and normalization given in Chapter 4 of Database
Systems: Introduction to Databases and Data Warehouses (Edition 3.0) is sufficient for the under-
standing of the normalization process that occurs in typical corporate and organizational set-
tings. This article gives an extended coverage of functional dependencies and normalization.

Candidate Keys and Functional Dependencies
In addition to the primary key, relations can also have one or more additional candidate
keys. Consider the example relation CITY shown in Figure 1. Relation CITY has a primary
key CityID and an additional composite candidate key CityName, State. Functional depen-
dencies in the relation CITY are shown in Figure 2.

Figure 1 Relation CITY with a primary key and a candidate key.

Figure 2 Functional dependencies in the relation CITY.

2 • Further Notes on Normalization and Higher Normal Forms

When a relation has other candidate keys in addition to its primary key, the following
expanded definitions of partial and full functional dependencies apply:

Partial Functional Dependency
This occurs when a component of a primary key or any other candidate key on its own
functionally determines the non-key columns of a relation.

Full Key Functional Dependency
This occurs when a key (primary or any other candidate key) functionally determines a
column of a relation, while no component of the key partially determines the same column.

Note in Figure 2 that the relation CITY has a primary key CityID and a composite candidate
key CityName, State. The primary key CityID fully functionally determines all the remaining
columns in the relation. Candidate key CityName, State also fully functionally determines
all the remaining columns in the relation. The column State functionally determines column
StatePopulation. This functional dependency is a partial functional dependency, because
column State is a component of a candidate key CityName, State.

Recall the definition of second normal form (2NF):

Figure 3 Normalizing relation CITY.

Figure 4 Data in the normalized relations for the CITY
example.

Second Normal Form (2NF)
A table is in 2NF if it is in first normal form (1NF) and if it
does not contain partial functional dependencies.

Relation CITY is not in 2NF because it contains a partial
functional dependency. Normalizing relation CITY to 2NF
involves eliminating the partial functional dependency by
decomposing the relation CITY into two relations, as shown
in Figure 3.

Figure 4 shows the records in the normalized tables.
Recall the definition of a transitive functional dependency:

Transitive Functional Dependency
This occurs when non-key columns functionally determine
other non-key columns of a relation.

Also recall the definition of second normal form (3NF):

Third Normal Form (3NF)
A table is in 3NF if it is in 2NF and if it does not contain
transitive functional dependencies.

The existence of the candidate key does not call for aug-
menting the definition of a transitive dependency, because
transitive dependency is defined as a dependency between
the non-key columns.

The relations in Figure 3 are already in 3NF.
How would the CITY relation in Figure 2 be normalized

if we did not acknowledge CityName, State as a candidate
key? In that case, the functional dependency

State → StatePopulation

Boyce-Codd Normal Form (BCNF) • 3

would be considered a transitive functional dependency. As such, it would be eliminated
in the process of normalizing to 3NF instead of being eliminated in the process of normal-
izing to 2NF. The final result of normalization would be exactly the same as in Figure 3. In
other words, relation CITY would end up normalized the same whether CityName, State
was treated as a key or not.

Boyce-Codd Normal Form (BCNF)
Boyce-Codd normal form (BCNF) is an extension of the third normal form (3NF). The fol-
lowing is a definition of BCNF:

Boyce-Codd Normal Form (BCNF)
A table is in BCNF if it contains no functional dependencies other than full key functional
dependencies (where only the primary key or other candidate keys fully determine other
columns).

In most cases, relations that are in 3NF are also in BCNF. A
3NF relation that has no candidate keys other than the pri-
mary key is by definition in BCNF. However, there are cases
when relations that have candidate keys in addition to the
primary keys may be in 3NF while not being in BCNF. For
example, consider the relation TEAMPLAYEROFTHEGAME
shown in Figure 5. The data in this relation records a team’s
player of the game for each game in which the team played.
In this example, the table contains data for a single season,
there are no trades of players (players stay with the same
team for the entire season), and no two players have the
same name (player’s names are unique.) Functional depen-
dencies for the relation TEAMPLAYEROFTHEGAME are
shown in Figure 6.

Figure 6 Functional dependencies in relation TEAMPLAYEROFTHEGAME (in 3NF but not in BCNF).

The relation TEAMPLAYEROFTHEGAME is in 3NF because it does not contain any
partial or transitive dependencies. However, this relation is not in BCNF because non-key
column TeamPlayerOfTheGame determines the key column Team.

The relation TEAMPLAYEROFTHEGAME is normalized to BCNF by creating two rela-
tions as shown in Figure 7.

Figure 7 Relation TEAMPLAYEROFTHEGAME normalized to BCNF.

Figure 5 Relation TEAMPLAYEROFTHEGAME (in 3NF but
not in BCNF).

4 • Further Notes on Normalization and Higher Normal Forms

Figure 8 shows the records in the normalized tables.
The issue of normalizing the relation TEAMPLAYEROFTHEGAME

to BCNF could have been avoided by choosing a different primary
key for the relation. Notice that there are two candidates for the
primary key for relation TEAMPLAYEROFTHEGAME shown in
Figure 5:

•	 GameOfSeason, Team
•	 GameOfSeason, TeamPlayerOfTheGame

In Figure 5, GameOfSeason, Team was chosen to be the pri-
mary key of the relation TEAMPLAYEROFTHEGAME. Figure 9
shows the relation TEAMPLAYEROFTHEGAME with the other
candidate (GameOfSeason, TeamPlayerOfTheGame) chosen
to be its primary key. Functional dependencies for the relation
TEAMPLAYEROFTHEGAME are shown in Figure 10.

Figure 9 Relation TEAMPLAYEROFTHEGAME with an alternate primary key.

Figure 10 Functional dependencies in relation TEAMPLAYEROFTHEGAME with an alternate primary
key.

This version of the relation TEAMPLAYEROFTHEGAME is not in 2NF because it contains
a partial dependency. It is normalized to 2NF in a standard way (described in Chapter 4 of
Database Systems: Introduction to Databases and Data Warehouses [Edition 3.0]) by creating an
additional relation for the partial dependency, as shown in Figure 11.

Figure 11 Relation TEAMPLAYEROFTHEGAME with an alternate primary key, normalized to 2NF (and
subsequently to 3NF and BCNF).

Note that the relations shown in Figure 11 are also normalized to 3NF and BCNF. In fact,
the relations in Figure 11 are identical to the relations in Figure 7. Conversely, the data records
for the relations shown in Figure 11 are the same as the data records shown in Figure 8.

Figure 8 Data in the normalized relations for the
TEAMPLAYEROFTHEGAME example.

Boyce-Codd Normal Form (BCNF) • 5

In this case, by choosing a different primary key, the
normalization process involved dealing with a partial
functional dependency instead of dealing with a func-
tional dependency where a non-key attribute determines
a key column. In other words, by choosing a different
primary key, the normalization process consisted of nor-
malizing to 2NF in order to normalize the relation instead
of normalizing to BCNF in order to normalize the relation.

Now let us consider an example when that is not the case.
Consider the relation DISPATCHINGTRUCKS shown in
Figure 12. The data in this relation records the load of dis-
patched trucks as well as when they were dispatched and
by which dispatcher. Each truck can be dispatched only
once a day by one dispatcher. Each day, one or more dis-
patchers are dispatching trucks, and we record how many hours each dispatcher worked
on each day. Functional dependencies for the relation DISPATCHINGTRUCKS are shown
in Figure 13.

Figure 13 Functional dependencies in relation DISPATCHINGTRUCKS (in 3NF but not in BCNF).

The relation DISPATCHINGTRUCKS is in 3NF because it does not contain any partial or
transitive dependencies. However, this relation is not in BCNF because combination of the
non-key column Dispatcher and a key column Date determines the non-key column Dhours.

The relation DISPATCHINGTRUCKS is normalized to BCNF by creating two relations
as shown in Figure 14.

Figure 14 Relation DISPATCHINGTRUCKS normalized to BCNF.

Figure 15 shows the records in the normalized tables.

Figure 12 Relation DISPATCHINGTRUCKS (in 3NF but not in
BCNF).

Figure 15 Data in the normalized relations for the
DISPATCHINGTRUCKS example.

6 • Further Notes on Normalization and Higher Normal Forms

Fourth Normal Form (4NF)
Consider the relation ORGANIZATION_STUDENT_CHARITY in
Figure 16.

In this example, organizations have student members and organizations
support various charities. The relation ORGANIZATION_STUDENT_CHAR-
ITY shows for each organization both its members and the charities the orga-
nization supports. Columns StudentID and Charity are both related to the
column OrgID, but they are not related to each other. One OrgID value can
be associated with multiple StudentID values, and separately one OrgID value
can be associated with multiple charity values. Formally this is depicted as

OrgID →→ StudentID
OrgID →→ Charity

where the symbol →→ (double arrow) indicates a multivalued dependency. Multi-
valued dependencies are often referred to as “tuple (row) generating dependen-
cies.” For example, because of OrgID →→ Charity, every time a new student joins
an organization, several new rows have to be generated (one for each charity that the
organization is associated with). Also, because of OrgID →→ StudentID, every time
a new charity becomes associated with an organization, several new rows have to
be generated (one for each student member of the organization).

As we illustrated, multivalued dependencies occur when separate columns of
the same relation contain unrelated values (i.e., when the same relation represents
separate relationships of cardinality greater than 1). The following is a definition
of fourth normal form (4NF):

Fourth Normal Form (4NF)
A table is in 4NF if it is in BCNF and does not contain multivalued dependencies.

Figure 16 Relation ORGANIZATION_
STUDENT_CHARITY (not in 4NF).

Figure 17 Relation
ORGANIZATION_​STUDENT_
CHARITY normalized to 4NF.

Consequently, a relation is not in 4NF if it contains multivalued dependencies.
Because of the multivalued dependencies, the relation ORGANIZATION_STUDENT_

CHARITY is not in 4NF. Normalizing to 4NF simply involves creating a separate relation
for each of the multivalued dependencies as shown in Figure 17.

In most cases, in practice, relations that are in 3NF are also already in 4NF. For example,
most designers modeling the organization depicted in the previous example would immedi-
ately create the two relations shown in Figure 17 that are in 3NF and 4NF. Only a particularly
artificial and/or inept effort would result in creating a table shown in Figure 16 that is in
3NF and then normalizing it to 4NF as shown in Figure 17.

Other Normal Forms
In addition to 4NF, there are other higher normal forms, such as fifth normal form (5NF) and
domain key normal form (DKNF). Such normal forms use theoretical concepts that are rarely
encountered in practice. Consequently, these concepts are beyond the scope of this book.

Note About the Term “Partial Functional Dependency”
In this book we use a simplified version of the term “partial functional dependency.” For
example, assume that A, B is a composite key in the relation with columns A, B, C. If, in this
relation, B functionally determines C, in this book, we would state that B → C is a partial
functional dependency. Technically, according to the original definition of partial depen-
dency, B → C is causing the A, B → C dependency to be a partial dependency. Either way,
we still need to move B → C to another table in order to eliminate the partial dependency
(and normalize to 2NF). We chose to use the simpler version of the term “partial functional
dependency” for brevity and ease of reading. No original meaning is lost using the simpli-
fied version. In both versions, the partial dependency occurs when a non-key attribute is
determined by a part of the primary key.

