LIST OF FIGURES

Figure 1-1. Data networks	1
Figure 1-2. Telegraph	6
Figure 1-3. Switching	10
Figure 1-4. Data communications timeline	12
Figure 1-5. Comparing the structure of data packets and letters	13
Figure 1-6. Packetization in business-knock-down kits	14
Figure 1-7. Aggregating traffic from multiple users	15
Figure 1-8. Network statistics: USF versus NYIIX	15
Figure 1-9. Layering in organizations	16
Figure 1-10. Layering in software	17
Figure 1-11. Network layers	17
Figure 1-12. Typical packet structure	19
Figure 1-13. Typical packet header information at a high level	19
Figure 1-14. TCP/IP layers and technologies	20
Figure 1-15. Network layer names and tasks in OSI model	21
Figure 1-16. OSI and TCP/IP	22
Figure 1-17. Data delivery technologies at TCP/IP architecture layers	24
Figure 1-18. Package delivery model in the postal service	24
Figure 1-19. A typical computer network	25
Figure 1-20. Anatomy of a web request	26
Figure 1-21. Use of tracert command to find route to www.uga.edu	30
Figure 1-22. Tracing the route to Nippon Telegraph and Telephone (NTT Japan)	31
Figure 1-23. TrendyWidgets office locations and staffing	33
Figure 2-1. Physical layer function	36
Figure 2-2. Comparing copper and the S&P 500 (1990–2019)	39
Figure 2-3. Cat5 and Cat3 cables	40
Figure 2-4. Shielded cable	40
Figure 2-5. Cat5e cable terminating in an RJ 45 connector	41
Figure 2-6. Cat5e wire positions on an RJ 45 plug	42
Figure 2-7. Aggregating network traffic from copper to fiber	43
Figure 2-8. Map of major submarine optical cables	44
Figure 2-9. Total internal reflection (conventional view)	44 45
Figure 2-10. Total internal reflection (view from inside the fiber)	45
Figure 2-11. Sunbeam created from total internal reflection Figure 2-12. Cross section of optical fiber	46
Figure 2-13. Digital and analog signals	50
Figure 2-14. Common digital signal (Manchester encoding, used in Ethernet)	51
Figure 2-15. Sine wave generated from the height of a point on a spinning wheel	51
Figure 2-16. Properties of a sine wave	52
Figure 2-17. Common analog signals	53
Figure 2-18. Impact of noise on a digital signal	54
Figure 2-19. Binary and ternary signals	56
Figure 2-20. Amplitude modulated signal representing example data	60
Figure 2-21. New York City, around 1900	61
Figure 2-22. Frequency allocation chart (2016)	62

Figure 2-23. AM multiplexing example	63
Figure 2-24. Resultant signal in the medium (sum of both modulated carriers)	64
Figure 2-25. Result of demodulation at the receiver end	64
Figure 2-26. Recovered signals after removing noise by averaging	65
Figure 2-27. NIST smart grid conceptual model	67
Figure 2-28. Amplitude phase shift keying example	69
Figure 3-1. Ethernet connector in the rear panel of a PC	73
Figure 3-2. Early Ethernet vision	74
Figure 3-3. Early diagram of Ethernet	74
Figure 3-4. Ethernet transmitter-receiver, early 1980s	74
Figure 3-5. Hub-based Ethernet	76
Figure 3-6. Typical Ethernet	76
Figure 3-7. Data and header in the medium	77
Figure 3-8. Mail broadcast	78
Figure 3-9. Receipt of data in Ethernet	79
Figure 3-10. Collision in Ethernet	80
Figure 3-11. Error cancellation in echo	83
Figure 3-12. CRC—Sender operation	85
Figure 3-13. CRC—Receiver operation	86
Figure 3-14. Frame with FCS in the medium	87
Figure 3-15. Ethernet frame structure	88
Figure 3-16. Ethernet address	90
Figure 3-17. Ethernet address example	91
Figure 3-18. Binary representation of the physical address shown in Figure 3-17	91
Figure 3-19. Loops in networks	93
Figure 3-20. Ethernet as part of a larger network	94
Figure 3-21. Viewing configuration of network interfaces	98
Figure 4-1. Routers connect networks	100
Figure 4-2. IP addresses and their relationship to data-link layer addresses	102
Figure 4-3. Data-link and IP headers in relation to packets	104
Figure 4-4. IP header	105
Figure 4-5. Street numbers help direct users to their destination	108
Figure 4-6. Example of the dotted-decimal representation of IP addresses	112
Figure 4-7. Network configuration of your computer	113
Figure 4-8. A two-part view of IP addresses	113
Figure 4-9. Analogy between home addresses and computer addresses	114
Figure 4-10. Multipart addressing in phone numbers	115
Figure 4-11. Zip codes—by leftmost digit	116
Figure 4-12. Zip codes—by two leftmost digits	117
Figure 4-13. IP address classes	119
Figure 4-14. Available addresses in each class	120
Figure 4-15. Network ID example	121
Figure 4-16. The IPv6 header	124
Figure 4-17. IPv6 allocation at the University of South Florida	126
Figure 4-18. ipconfig output showing IP address of Ethernet interface	131
Figure 4-19. Searching the ARIN database for IP address block ownership	132
Figure 4-20. Using ping	133
Figure 4-21. Home network connection	133
Figure 4-22. Pinging the local home router	134
Figure 5-1. Transport layer relative to applications and the network layer	137
Figure 5-2. Segmentation by TCP	139
Figure 5-3. TCP reliability based on sequence numbers	140

Figure 5-4. TCP ports and multiplexing	142
Figure 5-5. Analogy between TCP ports and airport gates	143
Figure 5-6. Tampa International Airport	144
Figure 5-7. Store aisle directions are analogous to server port directions	145
Figure 5-8. etc\services file on Windows	145
Figure 5-9. Viewing used ports with the netstat utility	146
Figure 5-10. netstat -b to show the executables that are using ports	147
Figure 5-11. netstat -s option	148
Figure 5-12. Stop-and-wait flow control, a very simple flow-control mechanism	149
Figure 5-13. Using TCP window size to refine stop-and-wait flow control	150
Figure 5-14. Sliding-window flow control	151
Figure 5-15. Stop-and-wait flow control with ISN	152
Figure 5-16. Three-way handshake to exchange initial sequence numbers	153
Figure 5-17. Multipath TCP organization	154
Figure 5-18. TCP header	155
Figure 5-19. UDP header	157
Figure 5-20. Output from netstat before and after connecting to http://www.stu.edu	162
Figure 6-1. Application layer in TCP/IP stack	166
Figure 6-2. internet versus Internet versus web	167
Figure 6-3. Map of World Wide Web	169
Figure 6-4. Example web page written in HTML	170
Figure 6-5. Example web page as displayed in a browser	171
Figure 6-6. HTTP transaction for an example web page	172
Figure 6-7. Cookies saved by www.usf.edu	177
Figure 6-8. Basic mechanism for Internet advertising using third-party cookies	178
Figure 6-9. Email system architecture	182
Figure 6-10. SMTP Wireshark capture	184
Figure 6-11. Web mail	188
Figure 6-12. FTP operation	190
Figure 6-13. Wireshark's download page	195
Figure 6-14. Wireshark welcome interface	195
Figure 6-15. Wireshark packet-capture window	196
Figure 6-16. Wireshark packet capture for htm1105.html	197
Figure 6-17. Follow TCP Stream window	198
Figure 6-18. Typical network setup	199
Figure 7-1. DHCP settings to allocate IP addresses in a specified range	203
Figure 7-2. Windows PCs use DHCP by default	203
Figure 7-3. DHCP operation timeline	205
Figure 7-4. Sample DHCP server-configuration file	207
Figure 7-5. Using nonroutable RFC 1918 IP addresses	209
Figure 7-6. Basic NAT operation	210
Figure 7-7. Using NAPT and nonroutable RFC 1918 IP addresses in ISPs	211
Figure 7-8. ARP sequence of operations	212
Figure 7-9. ARP packets exchanged in Figure 7-8	213
Figure 7-10. ARP cache displayed using arp –a	213
Figure 7-11. DNS use	214
Figure 7-12. View of a section of the domain name hierarchy	216
Figure 7-13. Recursive DNS query resolution	218
Figure 7-14. Typical DNS query (to obtain the IP address of www.ub.edu)	219
Figure 7-15. Tracing the DNS query for www.usf.edu	219
Figure 7-16. Changes in the IP address of www.amazon.com	221
Figure 7-17. Sample BIND DNS server configuration file	222

Figure 7-18. Home PC IP configuration	223
Figure 7-19. Home LAN with a wireless router	223
Figure 7-20. Home wireless router web interface	224
Figure 7-21. Virtual hosts architecture	227
Figure 7-22. Using nslookup to resolve a URL	229
Figure 7-23. Using an IP address to navigate to a website	229
Figure 7-24. Using set d2 option with nslookup	230
Figure 8-1. A switched network versus a routed network	233
Figure 8-2. Router at the interface between USF and Spectrum networks	234
Figure 8-3. Home router	234
Figure 8-4. Typical wireless router ports, including WAN port	234
Figure 8-5. Network routes in the neighborhood of 131.247.0.0/16 (USF)	235
Figure 8-6. Example tracert output	238
Figure 8-7. Route print output Routing protocols	239
Figure 8-8. Routes without route aggregation	242
Figure 8-9. Routes with route aggregation	243
Figure 8-10. Example of advertisement of an aggregated route	244
Figure 8-11. IP header	245
Figure 8-12. Network neighborhood around sandiego.edu (AS 2152)	245
Figure 8-13. MPLS labeling	247
Figure 8-14. Reachable prefixes around 9/11	251
Figure 8-15. BGPlay query results	254
Figure 8-16. Smart-city infrastructure for autonomous vehicles	255
Figure 9-1. IP address allocation without subnetting	258
Figure 9-2. IP address allocation with subnetting	259
Figure 9-3. Internal structure of a large campus-wide network	260
Figure 9-5. Two-part interpretation of an IP address	261
Figure 9-4. Subnet structure of a large network	261
Figure 9-6. Three-part interpretation of an IP address	262
Figure 9-7. Similarities between subnetting and phone numbers	262
Figure 9-8. Example university college subnets	266
Figure 9-9. Using ipconfig to find subnet mask	268 268
Figure 9-10. Subnet mask structure	270
Figure 9-11. Subnet masking of packets at router to determine subnet ID Figure 9-12. Packet transmission to hosts within and outside subnets	270 271
Figure 9-13. Calculating the length of the subnet ID	271
Figure 9-14. Standard field sizes of unicast IPv6 addresses	273
Figure 9-14. Standard field sizes of difficast 11 vo addresses	276
Figure 9-16. ipconfig /all more showing subnet mask information	278
Figure 10-1. Neighborhood intersection as a CSMA example	281
Figure 10-2. Traffic merging onto the interstate	281
Figure 10-3. Early Internet-used phone lines	282
Figure 10-4. WAN built using T-1 lines	283
Figure 10-5. Comparing point-to-point and statistically multiplexed WANs	284
Figure 10-6. Reduced burstiness of aggregate traffic	285
Figure 10-7. Virtual circuits	287
Figure 10-8. Traceroute showing LAN and WAN links in path	291
Figure 10-9. WANs in relation to IP and LANs	291
Figure 10-10. The MQ-9 Reaper UAV (Drone)	293
Figure 10-11. Network tab in "Inspect element	295
Figure 11-1. General information risk-management model	299
Figure 11-2. A typical office worker	300

Figure 11-3. Typical firewall setup	305
Figure 11-4. Typical enterprise firewall configuration	306
Figure 11-5. Encryption prevents enemies from reading data	309
Figure 11-6. VPN example	314
Figure 11-7. TLS example	315
Figure 11-8. Home router security settings	316
Figure 11-9. Comparing asymmetric keys for confidentiality and integrity	317
Figure 11-10. Network redundancy at Google	319
Figure 11-11. Outage example	319
Figure 11-12. Albert Gonzalez, at the time of his indictment in August 2009	322
Figure 11-13. Transition from HTTP to HTTPS at a secure website	324
Figure 11-14. TCP stream showing encryption	325
Figure 12-1. Computer, circa 1892	326
Figure 12-2. The von Neumann architecture	327
Figure 12-3. Modern computer architecture with an operating system	329
Figure 12-4. Process state transitions	331
Figure 12-5. Threads within a process	331
Figure 12-6. Specifying web server threads in IIS	332
Figure 12-7. Threads associated with a browser tab in Chrome	333
Figure 12-8. Virtual memory	334
Figure 12-9. CPU usage in kernel mode and user mode	336
Figure 12-10. Virtualization overview	341
Figure 12-11. Warehouse scale computer array architecture	344
Figure 12-12. Individual server at Google WSC	344
Figure 12-13. Google container WSC cutout	345
Figure 12-14. Cloud architecture with OpenStack	349
Figure 12-15. Cloud computing usage at Animoto	351
Figure 12-16. Perfmon window	352
Figure 12-17. Perfmon add counters dialog	353
Figure 12-18. Perfmon counters added	353
Figure 12-19. Perfmon counters for the exercise	354
Figure 12-20. Perfmon counters activity capture	354
Figure 13-1. Technical tools and cultural practices of DevOps	358
Figure 13-2. Container technologies	360
Figure 13-3. Feature-flag example	364
Figure 13-4. Creating a new GitHub repository	369
Figure 13-5. HTML page in text editor	369
Figure 13-6. Uploading files to your GitHub repository	370
Figure 14-1. Logical infrastructure design example	375
Figure 14-2. Physical infrastructure design example	376
Figure 14-3. Layered campus network example	377
Figure 14-4. Enterprise network example	379
Figure 14-5. SNMP architecture	380
Figure 14-6. Sample Nessus report	381
Note: The following figures appear in the three supplementary chapters included in the eTextbook only.	
Figure 15-1. Wireless networks can overlap	396
Figure 15-2. Structure of a campus-wide wireless LAN	398
Figure 15-3. 802.11 frame format	399
Figure 15-4. Header fields in a captured wireless frame	400
Figure 15-5. Wireless LAN physical-layer header	401

Figure 15-6. Bluetooth frequency hopping transmission	404
Figure 15-7. Bluetooth frame structure	406
Figure 15-8. VSAT system operation	411
Figure 15-9. AirPCap capture topology	413
Figure 16-1. Landline adoption	416
Figure 16-2. Phone network components	417
Figure 16-3. Map showing operating areas of the seven RBOCs in 1984	420
Figure 16-4. Phone and DSL signal frequencies	421
Figure 16-5. Cell-phone adoption	423
Figure 16-6. Cell-phone technology evolution	425
Figure 16-7. Cell-phone system architecture	426
Figure 16-8. Cell-phone frequency reuse pattern example	428
Figure 16-9. Resizing cells to accommodate subscribers	428
Figure 16-10. Cell phone towers in Pomona, California	429
Figure 16-11. Alexander Graham Bell's diary, March 10, 1876	432
Figure 16-12. Data and chipped signal example	435
Figure 17-1. Comparing active-active and active-passive high-availability solutions	443
Figure 17-2. High-availability application server configuration example	447
Figure 17-3. Typical web application architecture for high availability	447
Figure 17-4. Business continuity and disaster-recovery cycle	450